%A SHEN Ya-ting %T Distribution and Speciation of Pb in Arabidopsis Thaliana Shoot and Rhizosphere Soil by In Situ Synchrotron Radiation Micro X-Ray Fluorescence and X-Ray Absorption Near Edge Structure %0 Journal Article %D 2014 %J SPECTROSCOPY AND SPECTRAL ANALYSIS %R 10.3964/j.issn.1000-0593(2014)03-0818-05 %P 818-822 %V 34 %N 03 %U {https://www.gpxygpfx.com/CN/abstract/article_6918.shtml} %8 2014-03-01 %X In order to investigate plant reacting mechanism with heavy metal stress in organ and tissue level, synchrotron radiation micro X-ray fluorescence(μ-SRXRF) was used to determine element distribution characteristics of K, Ca, Mn, Fe, Cu, Zn, Pb in an Arabidopsis thaliana seedling grown in tailing dam soil taken from a lead-zinc mine exploration area. The results showed a regular distribution characters of K, Ca, Fe, Cu and Zn, while Pb appeared not only in root, but also in a leaf bud which was beyond previously understanding that Pb mainly appeared in plant root. Pb competed with Mn in the distribution of the whole seedling. Pb may cause the increase of oxidative stress in root and leaf bud, and restrict Mn absorption and utilization which explained the phenomenon of seedling death in this tailing damp soil. Speciation of Pb in Arabidopsis thaliana and tailing damp rhizosphere soil were also presented after using PbL3 micro X-ray absorption near edge structure(μ-XANES). By comparison of PbL3 XANES peak shape and peak position between standard samples and rhizosphere soil sample, it was demonstrated that the tailing damp soil was mainly formed by amorphous forms like PbO(64.2%), Pb(OH)2(28.8%) and Pb3O4(6.3%) rather than mineral or organic Pb speciations. The low plant bioavailability of Pb demonstrated a further research focusing on Pb absorption and speciation conversion is needed, especially the role of dissolve organic matter in soil which may enhance Pb bioavailability.