%A ZHANG Yu-lan;CHEN Li-jun*;DUAN Zheng-hu;WU Zhi-jie;SUN Cai-xia;WANG Jun-yu %T Change in Soil Enzymes Activities after Adding Biochar or Straw by Fluorescent Microplate Method %0 Journal Article %D 2014 %J SPECTROSCOPY AND SPECTRAL ANALYSIS %R 10.3964/j.issn.1000-0593(2014)02-0455-05 %P 455-459 %V 34 %N 02 %U {https://www.gpxygpfx.com/CN/abstract/article_6846.shtml} %8 2014-02-01 %X The present work was aimed to study soil α-glucosidase and β-glucosidase activities of and red soils based on fluorescence detection method combined with 96 microplates with TECAN Infinite 200 Multi-Mode Microplate Reader. We added biochar or straw (2.5 g air dry sample/50g air dry soil sample) into and red soils and the test was carried under fixed temperature and humidity condition (25 ℃, 20% soil moisture content). The results showed that straw addition enhances soil α- glucosidase and β-glucosidase activities, β-glucosidase activity stimulated by rice straw treatment was higher than that of corn straw treatment, and activity still maintains strong after 40 days, accounting for increasing soil carbon transformation with straw inputting. Straw inputting increased soil nutrients contents and may promote microbial activity, which also lead to the increase oin enzyme activities. Different effects of straw kinds may be related to material source that needs further research. However, biochar inputting has little effect on soil α- glucosidase and β- glucosidase activity. Biochar contains less available nutrients than straw and have degradation-resistant characteristics. Compared with the conventional spectrophotometric method, fluorescence microplate method is more sensitive to soil enzyme activities in suspension liquid, which can be used in a large number of samples. In brief, fluorescence microplate method is fast, accurate, and simple to determine soil enzymes activities.