%A YU Zhi-rong, HONG Ming-jian %T Near-Infrared Spectral Quantitative Analysis Network Based on Grouped Fully Connection %0 Journal Article %D 2022 %J SPECTROSCOPY AND SPECTRAL ANALYSIS %R 10.3964/j.issn.1000-0593(2022)06-1735-06 %P 1735-1740 %V 42 %N 06 %U {https://www.gpxygpfx.com/CN/abstract/article_12739.shtml} %8 2022-06-01 %X As a typical structure in deep learning, a fully connected network appears in almost all neural network models. In the quantitative analysis of near-infrared spectroscopy, the number of spectral samples is small, but the dimension of each sample is high. It leads to two problems: if the spectrum is directly input into the network, the number of parameters of the network will be very large, which requires more samples to train the model. Otherwise, the model is prone to over fitting; reducing the dimension of the spectrum before inputting it into the network solves the problem that the number of parameters of the network is too large, but it will lose some information and cannot give full play to the learning ability of the network. According to the characteristics of near-infrared spectrum, a group fully connected near-infrared spectrum quantitative analysis network(GFCN) is proposed. Based on the traditional two-layer fully connected network, the network uses several small fully connected layers to replace the first fully connected layer, which overcomes the disadvantage of too many network parameters caused by a direct input spectrum. The GFCN model was tested with Tecator and IDRC2018 datasets and compared with a fully connected network (FCN) and partial least squares (PLS). The results show that the prediction effect of GFCN is better than that of FCN and PLS on the two datasets. In the case of only a small number of samples participating in the modeling, GFCN can still maintain a high prediction effect. The experimental results show that the GFCN can be used for the quantitative analysis of near-infrared spectrum and adapt to the scene with few samples. It indicates that the proposed model has important research value and good application prospects.