%A %T Hyperspectral Image Features Combined With Spectral Features Used to Classify the Bruising Time of Peach %0 Journal Article %D 2021 %J SPECTROSCOPY AND SPECTRAL ANALYSIS %R 10.3964/j.issn.1000-0593(2021)08-2598-06 %P 2598-2603 %V 41 %N 08 %U {https://www.gpxygpfx.com/CN/abstract/article_12183.shtml} %8 2021-08-01 %X From the ripening of the fruit tree to reaching the consumers, the peaches need to go through a series of processes such as picking, packaging, and transportation. In each process, bruised fruit may occur. Therefore, it is particularly important to check which process produces the most bruises and to improve the processing process in a targeted manner. Throughout the application of hyperspectral technology in detecting fruit bumps at home and abroad, most of them ignore image features and only use spectral features. Modeling based on image features combined with spectral features is rare. Secondly, the interval is usually the number of days in terms of the qualitative judgment of fruit bump time. The larger time interval, the longer fruit bump time, and the more obvious change, the higher detection accuracy. There is no effective method of classifying the bump time for the fruits which were bruised in a very short time. In this paper, 90 simulated surface bruises were taken as experimental samples, and hyperspectral images of the bruises 12, 24, 36 and 48 h were collected respectively. The spectral feature extraction of the peach sample uses the average spectrum of 100 pixels in the region of interest to prevent the spectral information of a single-pixel from being significantly different from the overall spectral information; The PC1 image that can best reflect the bruise of the peach is selected after dimensionality reduction by principal component analysis (PCA). In the weight coefficient curve of the PC1 image, 4 characteristic wavelength points (512, 571, 693, 853 nm) at the peak and valley points are selected as the characteristic image. The average gray value which calculates as the characteristic image after graying is used as the feature of the bruised peach image. Finally, based on the least squares support vector machine (LS-SVM) algorithm, three discriminant models, namely the spectral feature model, image feature model and image feature combined with the spectral feature model of the peach bruise time were established, and the performance of models was judged according to their classification accuracy. The research results show that the classification accuracy of the three peach bruise models increases with the increase of bruise time; the model based on the radial basis kernel function (RBF_kernel) combined with the spectral features has the best predictive effect, and it has the best prediction effect on bruises. The recognition accuracy rates of the peach samples at 12, 24, 36 and 48 h were 83.33%, 96.67%, 100% and 100%, respectively. This may be due to the model established by the radial basis kernel function with nonlinear characteristics is more suitable for peach Classification of bump time. The model combining image features with spectral features can better estimate the fruit bump time, and it can provide a certain reference and basis for fruit external quality sorting, which has certain reference significance for fruit sales and deep processing enterprises.