%A %T Determination of Thallium and Its Compounds in Workplace Air by Ultrasonic Extraction-Inductively Coupled Plasma Mass Spectrometry Using No Gas Mode %0 Journal Article %D 2021 %J SPECTROSCOPY AND SPECTRAL ANALYSIS %R 10.3964/j.issn.1000-0593(2021)07-2279-05 %P 2279-2283 %V 41 %N 07 %U {https://www.gpxygpfx.com/CN/abstract/article_12133.shtml} %8 2021-07-01 %X Thallium (Tl), an extremely toxic metal element, was mainly used to manufacture semiconductors, electronic equipment, pesticide, and rodenticide. The determination of thallium and its compounds in workplace air was of great significance to ensure the health of the occupational people because they posed a potential threat to their physical health. Although trace amounts of thallium were more toxic than other toxic metals in the workplace air, little research was done. At present, atomic absorption spectrometry (AAS) was the main method for thallium assay in workplace air, but this method had some shortcomings. Therefore, we proposed a new method for the determination of thallium and its compounds in workplace air by ultrasonic extraction-inductively coupled plasma mass spectrometry (ICP-MS) using No Gas mode. At the sampling point, the short sampling workplace air was sampled by a microporous membrane with an aperture of 0.8 μm according to GBZ 159—2004 method. The effect of ultrasonic extraction conditions on the result was investigated, and the interference and elimination of mass spectrometry were analyzed. The optimized experimental conditions were 3% HNO3 for ultrasonic extraction of the filter membrane samples for 10 min at room temperature and No Gas mode for ICP-MS analysis. Under the optimal conditions, good linearity was obtained in the range of 0.087 to 80 ng·mL-1, with linear calibration curves of Y=0.009 2X-0.001 8 (R=0.999 9). The detection limit (LOD) was 0.026 ng·mL-1. When the sampling volume was 75 L, the minimum detected concentration was 0.001 7 g·m-3, and the minimum quantitative concentration was 0.005 7 g·m-3. The precision and accuracy of the method were verified by the quality control samples (thallium quality control samples ZK147 and ZK148 in the filter membrane). The results showed no significant difference between the measured value and the reference value, and the relative standard deviation (RSDs) was 0.77% and 0.86%. Interference analysis of the new method was carried out by adding standard method (common interfering elements with 3 times the thallium content in membranes), and the recovery rate was between 97.2% and 106.7%, indicating that the method had strong anti-interference ability. Comparing with the national standard method of “Determination of toxic substances in workplace air-Part 25: Thallium and its compounds” GBZ/T 300.25—2017 solvent elution-graphite furnace atomic absorption spectrometry (GFAAS), the results of 10 samples were basically consistent. And the proposed method exhibited a simpler operation, lower detection limit, wider linear range and higher accuracy, which met the needs of accurate, rapid, trace and high-throughput determination of thallium and its compounds in samples. The new method is expected to be a new method for the determination of thallium and its compounds in workplace air and can provide reference and basis for health monitoring of specific occupational groups more effectively.