|
|
|
|
|
|
Identification of Beef Spoilage Processes Using the Infrared Spectrum of Volatiles |
YE Song1,ZHANG Bing-ke1, 2,YANG Hui-hua1,ZHANG Wen-tao1,DONG Da-ming2* |
1. School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin 541004, China
2. Beijing Research Center for Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China |
|
|
Abstract Beef is highly susceptible to microbial infection causing spoilage in the process of transportation, so the monitoring on beef spoilage is very important. This paper proved that beef in the process of spoilage released ammonia and carbon dioxide which were the main volatile substances. We used the long optical path FTIR spectra to detect the volatiles of beef spoilage. We quantitatively analyzed the change rule of ammonia and carbon dioxide in the process of beef spoilage to judge the state of beef. We used principal component analysis(PCA) to realize infrared spectral classification of volatile substance and accurately distinguish fresh and decayed beef. We used chemometrics methods: soft independent modeling cluster analysis(SIMCA) and partial least squares discriminant analysis(PLS-DA) to classify the characteristic spectrum of volatiles. The two methods both worked well. Results showed that the long optical path FTIR combined with chemometrics methods could distinguish fresh and decayed beef.
|
Received: 2015-03-18
Accepted: 2015-07-29
|
|
Corresponding Authors:
DONG Da-ming
E-mail: damingdong@hotmail.com
|
|
[1] YU Mei, MAO Hua-ming, HUANG Bi-zhi(余 梅,毛华明,黄必志). China Animal Husbandry & Veterinary Medicine(中国畜牧兽医), 2007,34(2): 33.
[2] WANG Zhi-qin, SUN Lei, YAO Gang, et al(王志琴,孙 磊,姚 刚,等). Xinjiang Agricultural Sciences(新疆农业科学), 2011, 48(6): 1120.
[3] Hong X, Wang J, Hai Z. Sensors and Actuators B: Chemical, 2012, 161(1): 381.
[4] Blixt Y, Borch E. International Journal of Food Microbiology, 1999, 46(2): 123.
[5] Argyri A A, Doulgeraki A I, Blana V A, et al. International Journal of Food Microbiology, 2011, 150(1): 25.
[6] Li J, Tan J, Martz F A, et al. Meat Science, 1999, 53(1): 17.
[7] Ellis D I, Broadhurst D, Goodacre R. Analytica Chimica Acta, 2004, 514(2): 193.
[8] Ammor M S, Argyri A, Nychas G E. Meat Science, 2009, 81(3): 507.
[9] Stremme W, Ortega I, Siebe C, et al. Earth and Planetary Science Letters, 2011, 301(3): 502.
[10] Man Y B C, Mirghani M E S. Journal of the American Oil Chemists’ Society, 2001, 78(7): 753.
[11] Man Y B C, Syahariza Z A, Mirghani M E S, et al. Food Chemistry, 2005, 90(4): 815.
[12] Gallardo-Velázquez T, Osorio-Revilla G, Loa M Z, et al. Food Research International, 2009, 42(3): 313.
[13] Meza-Márquez O G, Gallardo-Velázquez T, Osorio-Revilla G. Meat Science, 2010, 86(2): 511.
[14] ZHAO Xian-de, DONG Da-ming, ZHENG Wen-gang, et al(赵贤德,董大明,郑文刚,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014,34(10): 2667.
[15] WANG Wen-zhong, DONG Da-ming, ZHENG Wen-gang, et al(王文重,董大明,郑文刚,等). Acta Chimica Sinica(化学学报), 2013,71(2): 234.
[16] Linstrom P J,Mallard W G, Eds. NIST Chemistry WebBook, NIST Standard Reference Database Number 69, National Institute of Standards and Technology, http://webbook.nist.gov, 1998.
[17] CHU Xiao-li(褚小立). Molecular Spectroscopy Analytical Technology Combined with Chemistries and its Applications(化学计量学方法与分子光谱分析技). Beijing: Chemical Industry Press(北京: 化学工业出版社), 2011. 356.
[18] WENG Shi-fu(翁诗甫). Fourier Transform Infrared Spectroscopy(傅里叶变换红外光谱分析). 2nd ed.(第2版). Beijing: Chemical Industry Press(北京: 化学工业出版社), 2012. 147. |
[1] |
ZHANG Hai-liang1, CHU Bing-quan2, YE Qing1, LIU Xue-mei1, LUO Wei1*. Classification of Fishness Based on Hyperspectra Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 559-563. |
[2] |
WU Yan-xian2, SONG Chun-feng1, 4, YUAN Hong-fu1, 4*, ZHAO Zhong2, TIAN Ling-ling3, YAN Yu-jiang3, TIAN Wen-liang5, WANG Li5. A New Multivariate Classification and Identification Method of Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(08): 2493-2499. |
[3] |
WU Zhe1,2,3, ZHANG Ji1,2, JIN Hang1,2, WANG Yuan-zhong1,2*, ZHANG Jin-yu1,2*. Qualitative and Quantitative Analysis of Paris polyphylla var. yunnanensis in Different Harvest Times with Infrared Spectroscopy Combined with Chemometrics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1754-1758. |
[4] |
LU Shao-yu1,2, WANG Shu-guang2, LIU Wen-jing1, JING Chuan-yong1*. Raman Spectroscopy in Ovarian Cancer Diagnostics[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(06): 1784-1788. |
[5] |
PANG Xiao-yu1, 2, YANG Zhong1, 2*, Lü Bin2, JIA Dong-yu2. Recognition of Three Types of Plantation Wood Species with Near Infrared Spectra Coupled with Back-Propagation Network[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(11): 3552-3556. |
[6] |
WANG Hai-long1, YANG Xiang-dong2, ZHANG Chu1, GUO Dong-quan2, BAO Yi-dan1*, HE Yong1, LIU Fei1. Fast Identification of Transgenic Soybean Varieties Based Near Infrared Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(06): 1843-1847. |
[7] |
LIU Na, WEI Xiu-li*, GAO Min-guang, XU Liang . A Quantitative Analysis Method of Water-Soluble Inorganic Ions with ATR-FTIR Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(12): 3364-3368. |
[8] |
JIANG Ling1, LI Miao1, LI Chun1, SUN Hai-jun2, XU Li2, LIU Yun-fei* . Terahertz Spectroscopy of Biotin and Pyridoxine [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(10): 2946-2951. |
[9] |
XIANG Ling-li1, LI Meng-hua1, LI Jing-ming2*, LI Jun-hui1, ZHANG Lu-da1, ZHAO Long-lian1* . Determination of Wine Original Regions Using Information Fusion of NIR and MIR Spectroscopy [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2014, 34(10): 2662-2666. |
[10] |
GUAN Xiao1, 2, GU Fang-qing2, LIU Jing3, YANG Yong-jian4 . Studies on the Brand Traceability of Milk Powder Based on NIR Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(10): 2621-2624. |
[11] |
REN Li-bing, YANG Hong-lei, WEI Hao-yun, LI Yan . The Realization of Moving Mirror Scanning in FTIR Spectrometer Using Completely Digital Control Method [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(08): 2263-2266. |
[12] |
GUO Cai-xia, YUE Tian-li*, YUAN Ya-hong, WANG Zhou-li, WANG Ling, CAI Rui . Study on Mechanism of Inactivated Cider Yeast Adsorbing Patulin by Fourier Transform Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2013, 33(03): 672-676. |
[13] |
HU Ai-qin1, YUAN Hong-fu1*, XUE Gang2, SONG Chun-feng1, LI Xiao-yu1, XIE Jin-chun1 . Study on Rapid Quantitative Analysis of the Active Ingredient in ABC Extinguishing Agent and Type Identification of Extinguishing Agent Powders Using Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(08): 2135-2138. |
[14] |
LI Zhong-bing, XU Xian-ze*, LE Yi, XU Feng-qiu, LI Jun-wei. Motion Control of Moving Mirror Based on Fixed-Mirror Adjustment in FTIR Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(08): 2295-2298. |
[15] |
YANG Zhong, Lü Bin, HUANG An-min, LIU Ya-na, XIE Xu-qin. Rapid Identification of Softwood and Hardwood by Near Infrared Spectroscopy of Cross-Sectional Surfaces[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2012, 32(07): 1785-1789. |
|
|
|
|