|
|
|
|
|
|
Influence Analysis of Target Surface Emissivity on Infrared Radiation Polarization Characteristics |
CHEN Wei-li1, SUN Qiu-ju2, WANG Shu-hua1, LI Jun-wei1, DONG Yan-bing1, XU Wen-bin1 |
1. Science and Technology on Optical Radiation Laboratory, Beijing 100854, China 2. Physics and Electronic Institute of Xinyang Normal University, Xinyang 464000, China |
|
|
Abstract Polarization imaging contains rich target parameters including spectrum, radiant intensity, polarization state, space geometry, etc. Polarization imaging can improve the target detection and recognition ability. The infrared polarization imaging is a new infrared detect technology in recent years. Infrared polarization imaging mainly aims to detect and identify the target with the difference of infrared radiation polarization characteristic between target and scene. But the state of polarization is affected by transmission medium in the transmission process of infrared radiation polarization information while the common method is to analyze the infrared radiation polarization characteristics of target that is not able to describe effects of all interrelated parameters and is difficult to estimate influence factors in the process of transmission. The equation of infrared polarized radiation is established through bidirectional reflectance distribution function based on micro-facet theory. And the mathematical model of the relationship between infrared radiation polarization degree and emissivity is derived in this paper. Result shows that the influence of target surface emissivity on the infrared degree can be ignored. On the basis of theoretical analysis, the infrared spectrum polarization imaging tests are unfolded, and the analysis of test data is consistent with the theoretical analysis. It is concluded that the correlation between the polarization degree of infrared and the emissivity of target surface can be neglected. The research production of this paper is conductive to increase of target detect efficiency, and it will provide new ways and means for camouflage target detect and identify. Therefore, the research production can be applied to detect and identify the camouflage target that is accomplished camouflage through change emissivity of camouflage target surface.
|
Received: 2016-04-20
Accepted: 2016-09-12
|
|
Corresponding Authors:
CHEN Wei-li
E-mail: 64784181@qq.com
|
|
[1] XING Su-xia, ZHANG Jun-ju, CHANG Ben-kang, et al(邢素霞, 张俊举, 常本康, 等). Infrared and Laser Engineering(红外与激光工程),2004, 33(5): 441.
[2] WANG Xin, WANG Xue-qin, SUN Jin-zuo(王 新, 王学勤, 孙金祚). Laser & Infrared(激光与红外),2007, 37(7): 676.
[3] Richard G Priest, Thomas A Germer. In Proceedings of the 2000 Meeting of the Military Sensing Symposia Specialty Group on Passive Sensors,2000. 169.
[4] Michael G Gartley. Polarimetric Modeling of Remotely Sensed Scenes in the Thermal Infrared. Rochester Institute of Technology,2007. 55.
[5] Nicodemus F E, Richmond J C, Hsia J J. Geometrical Considerations and Nomenclature for Reflectance. Ernest Ambler: National Bureau of Standards, 1977. 629.
[6] SUN Wei, LIU Zheng-kai, SHAN Lie(孙 玮, 刘政凯, 单 列). Optical Technique(光学技术), 2004, 30(3): 267.
[7] TANG Kun, ZOU Ji-wei, JIANG Tao, et al(唐 坤, 邹继伟, 姜 涛, 等). Infrared and Laser Engineering(红外与激光工程), 2007, 36(5): 611.
[8] Andrew resnick, Chris Persons, George Lindquist. Applied Optics,1999, 38(8): 1384.
[9] Richard G Priest, Steven R Meier. Optical Engineering, 2002, 41(5): 988.
[10] CHEN Wei-li, WANG Shu-hua, JIN Wei-qi, et al(陈伟力, 王淑华, 金伟其, 等). Journal of Infrared and Millimeter Waves(红外与毫米波学报), 2014, 33(5): 507.
|
[1] |
QIAO Wen-long1, 2, ZHOU Liang1*, LIU Zhao-hui1, GONG Yong-hui3, JIANG Le1, LÜ Yuan-yuan1, 2, ZHAO He-tong1, 2. Study on Multispectral Polarization Characteristics of Biological Tissues[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1070-1075. |
[2] |
SUN Hong-sheng1, 2, LIANG Xin-gang1, MA Wei-gang1, ZHANG Yu-feng3, QIU Chao2, MA Yue-gang2. Method and Device for Measuring High-Temperature Spectral Emissivity of Non-Conductive Materials Based on Laser Rotation Heating[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 310-315. |
[3] |
XU Yan-fen1, ZHANG Kai-hua1*, LIU Yan-lei1, YU Kun1, LIU Yu-fang1, 2*. Experimental Investigation of Spectral Emissivity of Copper-Nickel Alloy During Thermal Oxidation Process[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2969-2974. |
[4] |
SUO Yu-ting1,2, LUO Hua-ping1,2*, LIU Jin-xiu1,2, LI Wei1,2, CHEN Chong3, XU Jia-yi1,2, WANG Chang-xu1,2. A Comparative Study on Roujean and Ross Li Models of Winter Jujube in South Xinjiang Under Different Outdoor Light[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(06): 1737-1744. |
[5] |
SUO Yu-ting1,2, LUO Hua-ping1,2*, LI Wei1,2,WANG Chang-xu1,2, XU Jia-yi1,2. Study on the Adaptability of Polarization Parameter Model of Winter Jujube in South Xinjiang to Outdoor Light Conditions[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 223-228. |
[6] |
HAO Tian-yi, HAN Yang*, LIU Zi-ping, LI Zi-ying, ZHAO Yun-sheng, NIU Hao-fang, YAO Hai-yan. Laser-Induced Chlorophyll Fluorescence Spatial Variation Distribution and Model Establishment Based on Multi-Angle Spectroscopy and Polarization Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3692-3698. |
[7] |
XING Jian1, MA Zhao2, BAI Yan1*. Multi Spectral Radiation External Penalty Function Inversion Algorithm for Flame Temperature Measurement of Biomass Boiler[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(12): 3761-3764. |
[8] |
ZHANG Fu-cai1, 2, TANG Wei1, SUN Xiao-gang2*. Multispectral True Temperature Inversion Based on Multi-Objective Minimum Optimization Principle of Reference Temperature[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3130-3135. |
[9] |
LI Ming, QIN Kai*, ZHAO Ning-bo, TIAN Feng, ZHAO Ying-jun. Study on the Relationship Between Black Soil Emissivity Spectrum and Total Potassium Content Based on TASI Thermal Infrared Data[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2862-2868. |
[10] |
ZHANG Fu-cai1, 2, LIU Yun-gang1, SUN Xiao-gang2*. Multispectral True Temperature Inversion Based on Multi-Objective Minimum Optimization Principle of Reference Temperature (IMR)[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(07): 2122-2127. |
[11] |
YU Kun1, SHI Rui-tao1, ZHANG Hui-yan1, WANG Wen-bao2, LIU Yu-fang1. Experimental Investigation of Infrared Spectral Emissivity of Pure Tungsten[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(01): 107-112. |
[12] |
DONG Hai-long, WANG Jia-chun*, ZENG Yu-run, CHEN Zong-sheng, SHI Jia-ming. Reflection Spectrum Study of THz Wave by Infrared Low Emissivity Stealth Coating[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3007-3012. |
[13] |
ZHANG Fu-cai1, 2, SUN Bo-jun1, SUN Xiao-gang1*, LIANG Mei1. Multi Objective Planck’s Minimization Optimization Method for Multispectral True Temperature Inversion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(06): 1834-1839. |
[14] |
XIA Jun1, ZHANG Fei2. A Study on Remote Sensing Inversion of Soil Salt Content in Arid Area Based on Thermal Infrared Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(04): 1063-1069. |
[15] |
XIN Cheng-yun, DU Xue-ping, GUO Fei-qiang, SHEN Shuang-lin. Radiation Thermometry Algorithms with Emissivity Constraint[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(03): 679-681. |
|
|
|
|