光谱学与光谱分析 |
|
|
|
|
|
Research on THz and Raman Spectra of RNA Nucleobases |
WANG Fang1, 4, ZHAO Dong-bo2, JIANG Ling1, XU Li3, SUN Hai-jun3, LIU Yun-fei1* |
1. College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China2. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China3. Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, China4. School of Electronic and Information Engineering, Sanjiang University, Nanjing 210012, China |
|
|
Abstract The Infrared and Raman spectra of RNA nucleobases in terahertz (THz) band (1~10 THz) were detected with Fourier transform infrared spectroscopy (FTIR) and Raman spectroscopy. The position of all the characteristic peaks and corresponding vibration modes of RNA nucleobase crystals were obtained with Guassian09 software and energy-based fragmentation approach under periodic boundary conditions (PBC-GEBF) method. The computational results were verified to be in accordance with experimental data, which indicated that the powder of RNA nucleobases is amorphous crystal structure. The infrared spectra demonstrated that adenine, guanine and cytosine all have 6 infrared active vibrational modes, while uracil only has 3. Comparing to experimental results, the position and intensity of the absorption peaks were nicely corroborated by the predicted spectrum, except that one weak vibrational frequency at 6.35 THz is missing and two peaks (4.83 and 5.39 THz) merge in the predicted spectrum of guanine; two peaks in 4.3 and 4.79 THz merge into a single one in the calculated spectrum of cytosine; the peaks of thymine in 3.32 and 3.82 THz merged. The computational results of Raman spectra were also verified to be in line with the experimental data. The position and intensity of the characteristics peaks were exactly simulated except that two peaks of guanine in 3.52 and 4.48 THz merged; two peaks in 7.26 and 8.03 THz merge and five peaks (3.57, 4.02, 4.49, 4.89, 5.98 THz) merge in the calculated spectrum of guanine. Through the analysis and identification of the characteristic peaks, it is indicated that the vibration modes of DNA nucleobases in 1~10 THz were derived from collective vibration of molecules in the lattice. The intermolecular hydrogen bond and the weak interaction force contribute greatly to the vibration modes. In addition, as the frequency increases to over 5.5 THz, the vibration modes will change from the atoms collective vibration to some atoms vibration. This research has important theoretical and practical reference value to reveal the effect of RNA nucleobases in the areas of RNA molecular structure constitution, biological macromolecules identification and terahertz spectra formation mechanism and biological inheritance.
|
Received: 2016-06-22
Accepted: 2016-09-28
|
|
Corresponding Authors:
LIU Yun-fei
E-mail: lyf@njfu.com.cn
|
|
[1] Michalska, Katarzyna, et al. Journal of Molecular Structure, 2016, 1115: 136. [2] Al-Zoubi N, Koundourellis J E, Malamataris S, et al. Journal of Pharmaceutical & Biomedical Analysis, 2002, 29(3): 459. [3] YAN Hui, FAN Wen-hui, et al(闫 慧,范文慧,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2013, 33(10): 2612. [4] Fischer B M, Walther M, UhdJepsen P. Physics in Medicine and Biology, 2002, 47(21): 3807. [5] Nishizawa J,Sasaki T, Suto K, et al. Optics Communications, 2005, 244(1-6): 469. [6] Li Shuhua, Li Wei, Fang Tao. Journal of the American Chemical Aociety, 2005, 127(19): 7215. [7] Li Wei, Li Shuhua, Jiang Yuansheng. Journal of Physical Chemistry, 2007, 111(11): 2193. [8] Li S, Li W, Ma J. Accounts of Chemical Research, 2014, 47(9): 2712. [9] Fang T, Li W, Gu F, et al. Journal of Chemical Theory and Computation, 2015, 11(1): 1. [10] Svensson M, Humbel S, Froese R D J, et al. Journal of Physical Chemistry, 1996, 100: 19357. [11] Fang Tao, Jia Junteng, Li Shuhua. Journal of Physical Chemistry, 2016, 120(17): 2700. [12] Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian 09, Revision D.01, Gaussian, Inc., Wallingford CT, 2013. [13] Kresse G, Furthmuller J. Comput. Mater, Sci. Physical Review B Condensed Matter, 1996, 6: 15. [14] Mahapatra S, Nayak S K, Prathapa S J, et al. Crystal Growth and Design, 2008, 8: 1223. [15] Stewart R F, Jensen L H. Acta Crystallographica, 1967, 23: 1102. [16] Barker D L, Marsh R E. Acta Crystallographica, 1964, 17(12): 1581. [17] Guille K, Clegg W. Acta Crystallographica, Section C: Crystal Structure Communications, 2006, 62: o515. |
[1] |
NIE Mei-tong1,2, XU De-gang1,2*, WANG Yu-ye1,2*, TANG Long-huang1,2, HE Yi-xin1,2, LIU Hong-xiang1,2, YAO Jian-quan1,2. Investigation on Characteristics of Edible Oil Spectra with Terahertz Time-Domain Attenuated Total Reflection Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2016-2020. |
[2] |
LIU Lu-yao1, ZHANG Bing-jian1,2*, YANG Hong3, ZHANG Qiong3. The Analysis of the Colored Paintings from the Yanxi Hall in the Forbidden City[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2054-2063. |
[3] |
CHEN Sheng, ZHANG Xun, XU Feng*. Study on Cell Wall Deconstruction of Pinus Massoniana during Dilute Acid Pretreatment with Confocal Raman Microscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2136-2142. |
[4] |
HE Qing1, JIANG Qin1, XING Li-da2, 3, AN Yan-fei1, HOU Jie4, HU Yi5. Microstructure and Raman Spectra Characteristics of Dinosaur Eggs from Qiyunshan, Anhui Province[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2143-2148. |
[5] |
CAI Zong-qi1, FENG Wei-wei1, 2*, WANG Chuan-yuan1. The Study of Oil Film Thickness Measurement on Water Surface Based on Laser Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1661-1664. |
[6] |
WU Jun, YOU Jing-lin*, WANG Yuan-yuan, WANG Jian, WANG Min, Lü Xiu-mei. Raman Spectroscopic Study of Li2B4O7 Crystal and Melt Structure[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1736-1740. |
[7] |
ZHANG Lu-tao, ZHOU Guang-ming*, ZHANG Cai-hong, LUO Dan. The Preparation of the New Membrane-Like Gold Nanoparticles Substrate and the Study of Its Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1741-1746. |
[8] |
CHEN Si-yuan1, YANG Miao1, LIU Xiao-yun2*, ZHA Liu-sheng1*. Study on Au@Ag Core-Shell Composite Bimetallic Nanorods Laoding Filter Paper as SERS Substrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1747-1752. |
[9] |
MA Ying1, WANG Qi2, QIU Zhi-li1*, LU Tai-jin3, LI Liu-fen1, CHEN Hua3, DENG Xiao-qin1, BO Hao-nan1. In-Situ Raman Spectroscopy Testing and Genesis of Graphite Inclusions in Alluvial Diamonds from Hunan[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1753-1757. |
[10] |
LIU Jia1, YANG Ming-xing1, 2*, DI Jing-ru1, 2, HE Chong2. Spectra Characterization of the Uvarovite in Anorthitic Jade[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1758-1762. |
[11] |
OUYANG Ai-guo, ZHANG Yu, TANG Tian-yi, LIU Yan-de. Study on Density, Viscosity and Ethanol Content of Ethanol Diesel Based on Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1772-1778. |
[12] |
PENG Heng, LIU Shuai, CHEN Xiang-bai*. Raman Study of Perovskite (C6H5CH2NH3)2PbBr4[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1763-1765. |
[13] |
ZHONG Qian1, 2, 3, WU Qiong2, 3, LIAO Zong-ting1, 2, 3*, ZHOU Zheng-yu1, 2, 3. Vibrational Spectral Characteristics of Ensignia Actinolite Jade from Guangxi, China[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1786-1792. |
[14] |
XU Wei-jie1, WU Zhong-chen1, 2*, ZHU Xiang-ping2, ZHANG Jiang1, LING Zong-cheng1, NI Yu-heng1, GUO Kai-chen1. Classification and Discrimination of Martian-Related Minerals Using Spectral Fusion Methods[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1926-1932. |
[15] |
GAO Hao1, WANG Xiao1, SHANG Lin-wei1, ZHAO Yuan1, YIN Jian-hua1*, HUANG Bao-kun2*. Design and Application of Small NIR-Raman Spectrometer Based on Dichroic and Transmission Collimating[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1933-1937. |
|
|
|
|