光谱学与光谱分析 |
|
|
|
|
|
Supercontinuum Generation in Tapered Microstructure Fibers with Different Taper Length by Using Femtosecond Laser |
LIU Zhi-hong1, 2, 3, WANG Wei1, 2, 3, YANG Jian-ju1, 3, HAN Ying1, 3*, ZHOU Gui-yao1, 3, QI Yue-feng1, 3, HOU Lan-tian1, 3 |
1. School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China 2. Jiangsu Key Laboratory of Meteorological Observation and Information Processing,Nanjing University of Information Science and Technology, Nanjing 210044, China 3. The Key Laboratory for Special Fiber and Fiber Sensor of Hebei Province, Qinhuangdao 066004, China |
|
|
Abstract Tapered microstructure fibers with different taper lengths and waist diameters are pumped with femtosecond laser for supercontinuum generation. With “fast and cold tapered method”, home made microstructure fiber with air-hole pitch Λ=6.53 μm and normalized air-hole diameter d/Λ=0.79 were tapered to 6, 8, 10 mm taper length while keeping d/Λ unchanged. Numerical simulations show that the zero dispersion wavelength shifts to blue when the taper waist shrinks. The zero dispersion wavelengths for untapered and 6, 8, 10 mm length tapered fiber were 1 029, 885, 806, and 637 nm, respectively. In the experiment, 120 fs pulses centered at 810 nm, which is generated by mode-locked Ti:sapphire laser at a repetition rate of 76 MHz, is coupled into the tapered microstructure fiber. With the tapered length of 6 mm, the center wavelength of the pump light locates in the normal dispersion region of the fiber and near the zero dispersion wavelength of the tapered waist. The main factors causes spectra broaden are intrapulse Raman scattering and cascaded four-wave mixing. When the pump power reaches 450 mW, continuous spectra with -5 dB flatness are generated at 390~461 and 1 134~1 512 nm. With 500 mW pump power, supercontinuum spans from 366 to 2 450 nm, which has already covered ultraviolet, visible, near-infrared and mid-infrared. This broadband spectrum almost reaches the red and blue edges of the microstructure fiber’s transmission bandwidth. With 8mm tapered length and 450 mW pump power, the blue edge of the continuous spectrum shifts down to 366 nm as a result of group velocity match and group acceleration mismatch, a 9 nm deeper blue shift compared to results from 6mm tapered length. With the tapered length of 10 mm, because the zero dispersion wavelength of the waist also moves to visible region, phase matching condition can still be satisfied in that region. Due to the effect of cascaded four-wave mixing, the frequency up conversion is realized in visible region. When pump power reaches 500mW, up conversion frequency lies in 30 nm band from 382 to 412 nm, the conversion efficiency is up to 27.7%.
|
Received: 2015-05-30
Accepted: 2015-09-10
|
|
Corresponding Authors:
HAN Ying
E-mail: hanyingysu@163.com
|
|
[1] YANG Hong-lei, WEI Hao-bin, LI Yan, et al(杨宏雷, 尉昊赟, 李 岩, 等). Spectroscopy and Spectral Analysis(光谱学与光谱分析), 2014, 34(2): 335. [2] Hartl I, Li X D, Chudoba C, et al. Opt. Lett., 2001, 26(9): 608. [3] Steinmetz T, Wilken T, Araujo-Hauck C, et al. Appl. Phys. B, 2009, 96(2-3): 251. [4] Alfano R R, Shapiro S L. Phys. Rev. Lett., 1970, 24(11): 592. [5] Liu K X, Garmire E. Opt. Lett., 1991, 16(3): 174. [6] Wadsworth W J, Witkowska A, Leon-Saval S G, et al. Opt. Express, 2005, 13(17): 6541. [7] Roy S, Mondal K, Chaudhuri P R. Appl. Optics, 2009, 48(31): G106. [8] CHEN Hai-huan, CHEN Zi-lun, ZHOU Xuan-feng, et al(陈海寰,陈子伦,周旋风,等). Chin. Opt. Lett., 2012, 10(12): 23. [9] Jiang T X, Wang G Z, Zhang W, et al. Opt. Lett., 2013, 38(4): 443. [10] Mller U, Srensen S T, Larsen C, et al. Opt. Fiber Technol., 2012, 18(5): 304. [11] Hilligse K M, Andersen T V, Paulsen H N, et al. Opt. Express, 2004, 12(6): 1045. [12] Leon-Saval S G, Birks T A, Wadsworth W J, et al. Opt. Express, 2004, 12(13): 2864. [13] Nandi P, Chen Z L, Witkowska A, et al. Opt. Lett., 2009, 34(7): 1123. [14] Love J D. Electron. Lett., 1987, 23: 993. [15] Town G E, Lizier J T. Opt. Lett., 2001, 26(14): 1042. [16] Agrawal G P. Nonlinear Fiber Optics, Fourth Edition & Applications of Nonlinear Fiber Optics, Second Edition(非线性光纤光学原理及应用,第2版). Translated by JIA Dong-fang, YU Zhen-hong, TAN Bin(贾东方,余震虹,谈 斌,译). Beijing:Publishing House of Electronics Industry(北京:电子工业出版社),2010. 6. [17] Le S T, Prilepsky J E, Turitsyn S K. Opt. Express, 2014, 22(22): 26720. |
[1] |
XU Lei, ZHU Lin, ZHANG Chun, YE Chang-qing*, CHEN Shuo-ran, LI Lin, LIANG Zuo-qin, WANG Xiao-mei*. Study on Properties of Azaanthracene Derivatives With Triplet-Triplet Annihilation Upconversion and One-Photon Hot Band Absorption
Upconversion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1761-1768. |
[2] |
LIANG Zuo-qin, YAN Xu, SONG Dong-dong, ZHANG Xiao-bo, ZHANG Jia-xuan, YE Chang-qing, CHEN Shuo-ran, WANG Xiao-mei. The Influence of Substituents in Anthracene Derivatives on the Performance of Triplet-Triplet Annihilation Upconversion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 802-807. |
[3] |
WANG Chong1, MO Jian-ye1,2, LI Dong-dong1, SHE Jiang-bo2, LIU Zhen2. Application and Research of NaYF4∶Yb3+/Eu3+ Upconverting Luminescent Micro-Nano Particles in Anti-Counterfeiting Identification[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1525-1529. |
[4] |
YE Chang-qing, YU Xue, CHEN Shuo-ran, LIANG Zuo-qin, ZHOU Yu-yang, WANG Xiao-mei*. Study on the Structure/Energy-Level of Palladuim-Porphyrin Sensitizers on the Triplet-Triplet-Annihilation Upconversion Performance[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 71-79. |
[5] |
CHEN Xiao-bo1, LI Song1, ZHAO Guo-ying2, LONG Jiang-mi1, WANG Shui-feng1, MENG Shao-hua2, WANG Jie-liang1, GUO Jing-hua1, YOU Jia-jia1, MA Yu2, YU Chun-lei3, HU Li-li3. The Silver Surface Plasmon Enhancement for Er3+ Ion Upconversion of 978 and 1 539 nm Laser in Bismuth Glass[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(09): 2721-2726. |
[6] |
CHEN Shuo-ran, HUANG Su-qin, HAN Peng-ju*, YE Chang-qing, SONG Sa-sa, WANG Xiao-mei*. Preparation of 9,10-Diphenylanthracene Derivative and Its Detection for Cu2+ by Up/Down-Conversion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(12): 3769-3775. |
[7] |
CHEN Shuo-ran1, ZHENG Dao-yuan1, LIU Teng1, YE Chang-qing1*, SONG Yan-lin2. Ratiometric Fluorescent Temperature Probe Based on Up/Down-Conversion Luminescence[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(10): 3088-3095. |
[8] |
WU Qi-xiao1, 2, ZHAO Su-ling1, 2*, XU Zheng1, 2, SONG Dan-dan1, 2, QIAO Bo1, 2, ZHANG Jun-jie1, 2, ZUO Peng-fei1, 2. Synthesis and Upconversion Mechanism of NaYF4∶Yb3+,Er3+ Nanocrystal Doped with Different Concentration of Sensitizer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2019, 39(05): 1406-1411. |
[9] |
ZHANG Yang, SUN Peng, LIU Lu*, WANG De-xing, CHEN Shu-yan*, CHENG Li, SU Li-ping, ZHU Zheng, CHEN Yang. Effects of Li Ions on the Thermal Radiation Induced by NIR Laser in Rare Earth Doped Oxide[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(09): 2725-2729. |
[10] |
CHEN Jia1, YE Chang-qing1, ZHU Sai-jiang1, WANG Xiao-mei1,2*, TAO Xu-tang2. Synthesis of 9,10-Diheterocyclicanthracenes and Performance Correlations in Triplet-Triplet Annihilation Upconversion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(03): 715-721. |
[11] |
ZHANG Li-gang1,2, ZHAO Su-ling1*, XU Zheng1, ZHU Wei1, BAI Yong-qing2, QU Jiao2, FAN Hong2. The Controllable Synthesis and Luminescent Properties of ScF3, NaScF4, (NH4)2NaScF6 Nanaocrysals[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 401-406. |
[12] |
CHEN Gan-xin1, CHENG Yun1*, QIAN Qi2. Energy Transfer Mechanism and Up-Conversion Emission Properties in Tm3+/Ho3+ Doped Tellurite Glasses[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(01): 302-307. |
[13] |
YANG Jian-ju1,2, HAN Ying1,2*, WANG Wei1,2, ZHOU Gui-yao1,2, ZHAO Xing-tao1,2, HOU Lan-tian1,2, QU Yu-wei1,2, NIU Jing-xia1,2. Deep Ultraviolet Supercontinuum Study in the Highly Nonlinear Photonic Crystal Fiber[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1215-1219. |
[14] |
WAN Xiong, LIU Peng-xi, ZHANG Ting-ting . Research Progress of Supercontinuum Laser Spectroscopy in Biomedical Field [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(02): 338-345. |
[15] |
WEI Yuan-fei, ZHAO Fu-li*, SHEN Peng-gao, WU Shi-qiang . Study on the Supercontinuum Generation with Femtosecond Pulse in Photonic Crystal Fiber[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2015, 35(12): 3283-3286. |
|
|
|
|