光谱学与光谱分析 |
|
|
|
|
|
Effect of Temperatures and Lead Ions on 3D-EEMs of Dissolved Organic Matter (DOM) Derived from Straw Humification |
FAN Chun-hui1, ZHANG Ying-chao2, WANG Jia-hong1 |
1. College of Resource & Environment, Shaanxi University of Science & Technology, Xi’an 710021, China2. College of Environment, Tsinghua University, Beijing 100084, China |
|
|
Abstract Straw incorporation is significant for straw reduction and reutilization, and is clearly required in the twelfth five-year-plan for national economic and social development of the People’s Republic of China. The incorporated straw will naturally decompose and release the component of dissolved organic matter (DOM). At present, it lacks the research on straw humification behavior controlled by environmental factors and complexation effect between humification component and metal ions with fluorescence spectrometry in the representative region of loess. The fluorescence spectrometry was used to reveal the 3D-EEMs characteristics of DOM affected by temperatures and lead ions in the straw humification process, and the modified Stern-Volmer equation and Van’t Hoff equation were applied to indicate the complexation parameters and thermodynamic constants between lead ions and DOM. The results showed: the humification temperatures affected little on fluorescence peaks of DOM and no peaks were obviously found to appear or disappear from the 3D-EEMs results. The fluorescence intensity decreased gradually at higher temperatures and in the presence of lead ions, the quenching effect might work in the process. The binding ability was more significant between lead ions and visible fulvic-like component shown from modified Stern-Volmer equation, and the values of f revealed the complexation effect of lead ions and functional groups in DOM. Static quenching was the primary mechanism during the reaction process. The constants in Van’t Hoff equation suggested the reaction was spontaneous and endothermic, and the disordered degree and the complexity were relatively low in the reaction system. The 3D-EEMs were acceptable to illustrate the variation of DOM characteristics under different temperatures and in the presence of lead ions in the straw humification process.
|
Received: 2014-06-12
Accepted: 2014-11-20
|
|
Corresponding Authors:
FAN Chun-hui
E-mail: frank_van391@163.com
|
|
[1] Goldman E A, Smith E M, Richardson T L. Water Research, 2013, 47(4): 1616. [2] Stutter M I, Richards S, Dawson J J C. Water Research, 2013, 47(3): 1169. [3] Almendros G. Science of the Total Environment, 1989, (81/82): 569. [4] Sánchez-Monedero M A, Roig A, Cegarra J, et al. Bioresource Technology, 1999, 70(2): 193. [5] Baker A. Environmental Science & Technology, 2001, 35(5): 948. [6] Prickett R C, Elliott J A W, Hakda S, et al. Cryobiology, 2008, 57(2): 130. [7] Sellami F, Hachicha S, Chtourou M, et al. Bioresource Technology, 2008, 99(15): 6900. [8] Braem O, Penfold T J, Cannizzo A, et al. Physical Chemistry Chemical Physics, 2012, 14(10): 3513. [9] Gonalves H, Jorge P A S, Fernandes J R A, et al. Sensors & Actuators B: Chemical, 2010, 145(2): 702. [10] ZHAO Nan-jing, LIU Wen-qing, ZHANG Yu-jun, et al(赵南京, 刘文清, 张玉钧, 等). Acta Photonica Sinica(光子学报). 2007, 36(3): 476. [11] Palmier M O, Van Doren S R. Analytical Biochemistry, 2007, 371(1): 43. [12] Wu J, Zhang H, He P J, et al. Water Research, 2011, 45(4): 1711. [13] Ghosh P, Bharadwaj P K, Mandal S, et al. Journal of the American Chemical Society, 1996, 118(6): 1553. [14] Esteves da Silva J C G, Machado A A S C, Oliveira C J S, et al. Talanta, 1998, 45(6): 1155. [15] Fang F, Kanan S, Patterson H H, et al. Analytica Chimica Acta, 1998, 373(2/3): 139. [16] Croué J P, Benedetti M F, Violleau D, et al. Environmental Science & Technology, 2003, 37(2): 328. [17] Zarruk K K D, Scholer G, Dudal Y. Chemosphere, 2007, 69(4): 540. [18] Mayer L M, Schick L L, Loder III T C. Marine Chemistry, 1999, 64(3): 171. |
[1] |
TAN Ai-ling1, WANG Si-yuan1, ZHAO Yong2, ZHOU Kun-peng1, LU Zhang-jian1. Research on Vinegar Brand Traceability Based on Three-Dimensional Fluorescence Spectra and Quaternion Principal Component Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2163-2169. |
[2] |
XIE Jun1, ZHAO Ya-nan1, CHEN Xuan-jing1, WANG Ke1, XU Chun-li1, LI Dan-ping1, ZHANG Yue-qiang1, 2, WANG Ding-yong1, SHI Xiao-jun1, 2*. Effect on Soil DOM Content and Structure Characteristics in Different Soil Layers by Long-Term Fertilizations[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(07): 2250-2255. |
[3] |
OUYANG Heng1,2*, XIAO Jian-ren3, LIN Xiu-yong4, FAN Gong-duan4*. Compositional Characteristics of Dissolved Organic Matter in Water Treatment Systems of Water Source Heat Pump Based on Three-Dimensional Fluorescence Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1146-1152. |
[4] |
WANG Yu-tian, LIU Ting-ting*, LIU Ling-fei, YANG Zhe, CUI Yao-yao. Determination of Polycyclic Aromatic Hydrocarbons in Water Based on Three Dimensional Fluorescence Spectroscopy Combined with Wavelet Compression and APTLD[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1171-1177. |
[5] |
ZHOU Yan-lei1, ZHOU Fei-fei1, JIANG Cong-cong1, SHI Xiao-yong1,2*, SU Rong-guo1. Research of Identification Method for the Oil Spills Species Based on Fluorescence Excitation-Emission Matrix and Parallel Factor Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 475-480. |
[6] |
XIE Zhi-yong1,2, XIE Li-qin1,2, JIANG Shen-hua1,2,3*, QU Wen-juan1,3, ZHANG Xiao-xia1,2, ZHANG Hua-hao1,2, HAO Shu1,2, ZHANG Liang-hui1,2, MA Hai-le1,3, SHEN Yong-gen1,4. The Comparison of Inhibition on LDL Non-Enzymatic Glycosylation and Oxidation between Ethyl Acetate Extracts of Clove and Clove Bud Oil Based on Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 518-527. |
[7] |
WANG Bi1, 2, XI Hong-bo2, ZHOU Yue-xi1, 2*, CHEN Xue-min1, FU Xiao-yong1. Effects of Different Substituents on Three Dimensional Fluorescence Properties of BTEX[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3763-3770. |
[8] |
WANG Yu-tian1, ZHANG Li-juan1, 2*, ZHAO Xu1, CHEN Yi-qiang3, PAN Zhao1, CAO Li-fang1, XU Jing1, YUAN Yuan-yuan1, NIU Kai-zeng1, ZHANG Ya-ji1. Study on the Three-Dimensional Fluorescence Spectra of Oil Mixture and Its Composition Based on Tri-PLS Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3771-3775. |
[9] |
HUANG Zhen-rong1, CHENG Cheng2, TANG Jiu-kai2, Lü Wei-ming1, TAO Ting-ting1, WANG Xiao-jiong1, WU Jing2*. Characterization of Organic Matters in the Effluent of Dyeing and Printing Wastewater Treatment Plants with Fluorescence Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3118-3121. |
[10] |
WEI Meng-xue1, 2, WANG Bin1, 2*, CHEN Shu1, 2, BAI Ying-chen3, DONG Fa-qin1, 2, ZHU Jing-ping1, LI Ming1, 2, WEI Jie2. Study on Spectral Characteristics of Dissolved Organic Matter Collected from the Decomposing Process of Crop Straw in West Sichuan Plain[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(09): 2861-2868. |
[11] |
LI Shuai-dong1, 2, 3, JIANG Quan-liang3, LI Ye3, WU Ya-lin3, JIANG Jun-wu3, HUANG Tao1, 2, 3, YANG Hao3, HUANG Chang-chun1, 2, 3*. Spectroscopic Characteristics and Sources of Dissolved Organic Matter from Soils around Dianchi Lake, Kunming[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(05): 1448-1454. |
[12] |
YU Shao-hui1, XIAO Xue2, XU Ge1. Data Compression of Time Series Three-Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1163-1167. |
[13] |
LI Shuai-dong1, 2, 3, ZHANG Ming-li3, YANG Hao3, LIU Da-qing3, YU Li-yan3, HUANG Tao1, 2, 3*, HUANG Chang-chun1, 2, 3*. Spectroscopic Characteristics of Dissolved Organic Matter from Top Soils on SongHuaba Reservoir in Kunmimg[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(04): 1183-1188. |
[14] |
LI Lei1, 2, LI Zhong-pei1, 2*, LIU Ming1, 2, MA Xiao-yan1, 2, TANG Xiao-xue1, 2 . Characterizing Dissolved Organic Matter (DOM) in Wastewater from Scale Pig Farms Using Three-Dimensional Excitation-Emission Matrices (3DEEM) [J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(02): 577-583. |
[15] |
FAN Chun-hui1, XU Hui-hui1, ZHANG Ying-chao2 . Spectral Evidence of In-Situ Regulatory Mechanisms on Chemical Speciation of Lead/Cadmium Affected by Dissolved Organic Matter Extracted from Rhizosphere Loess of Calendula Officinalis Seedling[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2016, 36(09): 2852-2857. |
|
|
|
|