光谱学与光谱分析 |
|
|
|
|
|
Low Carbon Number Fatty Acid Content Prediction Based on Near-Infrared Spectroscopy |
SONG Zhi-qiang1, SHEN Xiong1, ZHENG Xiao1*, HE Dong-ping2, QI Pei-shi3, YANG Yong4, FANG Hui-wen4 |
1. College of Mechanical Engineering, Wuhan Polytechnic University, Wuhan 430023, China 2. College of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China 3. PASHUN GROUP, Wuhan 430023, China 4. Wuhan Product Quality Supervision & Testing Institute, Wuhan 430023, China |
|
|
Abstract The rapid prediction of the low-carbon fatty acids (C≤14) content in grease samples was achieved by a mathematical model established by near infrared spectroscopy combined with support vector machine regression (SVR). In the present project, near-infrared spectrometer SupNIR-5700 was used to collect near-infrared spectra of 58 samples; partial least square (PLS) was applied to remove the strange samples, and principal component analysis (PCA) was conducted on the measurements; radial basis function (RBF) kernel function was selected to establish a regression model supporting vector machine, and then detailed analysis and discussions were conducted concerning their spectral preprocessing and parameters optimization methods. Experimental results showed that by applying particle swarm optimization (PSO) the model demonstrated improved performance, stronger generalization ability, better prediction accuracy and robustness. In the second pretreatment method after PSO, when the optimization parameters are: C=2.085, γ=22.20, the prediction set and calibration set correlation coefficient (r) reached 0.998 0 and 0.925 8, respectively; and root mean square errors (MSE) were 0.000 4 and 0.014 3, respectively. Research results proved that the method based on near infrared spectroscopy and PSO-SVR for accurate and fast prediction of the low-carbon fatty acid content in vegetable oil is feasible.
|
Received: 2013-02-01
Accepted: 2013-04-20
|
|
Corresponding Authors:
ZHENG Xiao
E-mail: zhengxiao@whpu.edu.cn
|
|
[1] CAO Wen-ming,XUE Bin,YANG Hai-tao,et al(曹文明,薛 斌,杨海涛,等). Grain Science and Technology and Economy(粮食经济与科技),2011,36 (1):41. [2] ZHOU Xiao-fen,YE Yang,ZHOU Zhu-ding,et al(周小芬,叶 阳,周竹定,等). Spectroscopy and Spectral Analysis(光谱学与光谱分析),2012,32(11):2971. [3] LI Xian-xia,CHEN Fei,ZHANG Jing-jing(李宪霞,陈 飞,张晶晶). Chinese Journal of Spectroscopy Laboratory(光谱实验室),2012,29(6):3529. [4] ZHU Li-wei,HUANG Yan-yan,WANG Qing,et al(朱丽伟,黄艳艳,王 庆,等). Transactions of the Chinese Society of Agricultural Engineering(农业机械学报),2012,28(Supp.2):237. [5] WANG Ming-yi,GUO Jian-ying,ZHANG Jia-ning(王铭义,郭建英,张佳宁). Food Science(食品科学),2011,32(22):171. [6] DONG Xue-feng,DAI Lian-kui,HUANG Cheng-wei(董学锋,戴连奎,黄承伟). Journal of Zhejiang University(Engineering Science)(浙江大学学报·工学版),2012,46(5):824. [7] ZHAO Jin-hui,YUAN Hai-chao,LIU Mu-hua,et al(赵进辉,袁海超,刘木华,等). Journal of Nuclear Agricultural Sciences(核农学报),2012,26(8):1154. [8] MA Shi-bang,XU Yang,PENG Yan-kun(马世榜,徐 杨,彭彦昆) . Journal of Food Safety and Quality(食品安全质量检测学报),2012,3(6):603. [9] LIU Xue-mei,ZHANG Hai-liang(刘雪梅,章海亮). Transactions of the Chinese Society for Agricultural Machinery(农业机械学报),2012,43(9):160. [10] Roman M Balabin,Ekaterina I Lomakina. Analyst,2011,136(8):1703. [11] Kadam K,Prabhakar P,Jayaraman V K. Protein Pept. Lett.,2012,19(11):1155. [12] YAN Yan-lu,ZHAO Long-lian,HAN Dong-hai,et al(严衍禄,赵龙莲,韩东海,等). Fundamentals and Applications of Near Infrared Spectroscopy(近红外光谱分析基础与应用). Beijing: China Light Industry Press(北京:中国轻工业出版社),2005. [13] CHEN Tao,YONG Long-quan,DENG Fang-an,et al(陈 涛,雍龙泉,邓方安,等). Computer Engineering and Applications(计算机工程与应用),2011,47(5):24. [14] Cai Zhuoran,Zhao Honglin,Yang Zhutian. Sensors(Basel),2012,12(11):15292.
|
[1] |
WANG Yue1, 3, 4, CHEN Nan1, 2, 3, 4, WANG Bo-yu1, 5, LIU Tao1, 3, 4*, XIA Yang1, 2, 3, 4*. Fourier Transform Near-Infrared Spectral System Based on Laser-Driven Plasma Light Source[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1666-1673. |
[2] |
FENG Rui-jie1, CHEN Zheng-guang1, 2*, YI Shu-juan3. Identification of Corn Varieties Based on Bayesian Optimization SVM[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1698-1703. |
[3] |
LI Quan-lun1, CHEN Zheng-guang1*, SUN Xian-da2. Rapid Detection of Total Organic Carbon in Oil Shale Based on Near
Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1691-1697. |
[4] |
LIU Mei-chen, XUE He-ru*, LIU Jiang-ping, DAI Rong-rong, HU Peng-wei, HUANG Qing, JIANG Xin-hua. Hyperspectral Analysis of Milk Protein Content Using SVM Optimized by Sparrow Search Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1601-1606. |
[5] |
ZHANG Tian-liang, ZHANG Dong-xing, CUI Tao, YANG Li*, XIE Chun-ji, DU Zhao-hui, ZHONG Xiang-jun. Identification of Early Lodging Resistance of Maize by Hyperspectral Imaging Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1229-1234. |
[6] |
LI Yan-yan1, 2, LUO Hai-jun1, 2*, LUO Xia1, 2, FAN Xin-yan1, 2, QIN Rui1, 2. Detection of Craniocerebral Hematoma by Array Scanning Sensitivity Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 392-398. |
[7] |
HUI Yun-ting1, WANG De-cheng1, TANG Xin2, PENG Yao-qi1, WANG Hong-da1, ZHANG Hai-feng1, YOU Yong1*. Detection of Sorghum-Sudan Grass Seed Germination Rate Based on Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 423-427. |
[8] |
JIANG Jie1, YU Quan-zhou1, 2, 3*, LIANG Tian-quan1, 2, TANG Qing-xin1, 2, 3, ZHANG Ying-hao1, 3, ZHANG Huai-zhen1, 2, 3. Analysis of Spectral Characteristics of Different Wetland Landscapes Based on EO-1 Hyperion[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 517-523. |
[9] |
LI Ming-liang1, DAI Yu-jia1, QIN Shuang1, SONG Chao2*, GAO Xun1*, LIN Jing-quan1. Influence of LIBS Analysis Model on Quantitative Analysis Precision of Aluminum Alloy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 587-591. |
[10] |
QIN Shuang1, LI Ming-liang1, DAI Yu-jia1, GAO Xun1*, SONG Chao2*, LIN Jing-quan1. The Accuracy Improvement of Fe Element in Aluminum Alloy by Millisecond Laser Induced Breakdown Spectroscopy Under Spatial Confinement Combined With Support Vector Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 582-586. |
[11] |
CAO Qiu-hong, LIN Hong-mei, ZHOU Wei, LI Zhao-xin, ZHANG Tong-jun, HUANG Hai-qing, LI Xue-min, LI De-hua*. Water Quality Analysis Based on Terahertz Attenuated Total Reflection Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(01): 31-37. |
[12] |
WU Ye-lan1, CHEN Yi-yu1, LIAN Xiao-qin1, LIAO Yu2, GAO Chao1, GUAN Hui-ning1, YU Chong-chong1. Study on the Identification Method of Citrus Leaves Based on Hyperspectral Imaging Technique[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3837-3843. |
[13] |
KONG De-ming1, CHEN Hong-jie1, CHEN Xiao-yu2*, DONG Rui1, WANG Shu-tao1. Research on Oil Identification Method Based on Three-Dimensional Fluorescence Spectroscopy Combined With Sparse Principal Component Analysis and Support Vector Machine[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3474-3479. |
[14] |
WANG Si-yuan1, ZHANG Bao-jun1, WANG Hao1, GOU Si-yu2, LI Yu1, LI Xin-yu1, TAN Ai-ling1, JIANG Tian-jiu2, BI Wei-hong1*. Concentration Monitoring of Paralytic Shellfish Poison Producing Algae Based on Three Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3480-3485. |
[15] |
LIN Hong-mei1, CAO Qiu-hong1, ZHANG Tong-jun1, LI Zhao-xin1, HUANG Hai-qing1, LI Xue-min1, WU Bin2, ZHANG Qing-jian3, LÜ Xin-min4, LI De-hua1*. Identification of Nephrite and Imitations Based on Terahertz Time-Domain Spectroscopy and Pattern Recognition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3352-3356. |
|
|
|
|