光谱学与光谱分析 |
|
|
|
|
|
UV Spectroscopy Coupled with Partial Least Squares to Determine the Enantiomeric Composition in Chiral Drugs |
LI Qian-qian1, WU Li-jun1, LIU Wei1, CAO Jin-li2, DUAN Jia1, HUANG Yue1, MIN Shun-geng1* |
1. Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China 2. Yunnan Dali Tobacco Company, Dali 671000, China |
|
|
Abstract In the present study, sucrose was used as a chiral selector to detect the molar fraction of R-metalaxyl and S-ibuprofen due to the UV spectral difference caused by the interaction of the R- and S-isomer with sucrose. The quantitative model of the molar fraction of R-metalaxyl was established by partial least squares (PLS) regression and the robustness of the models was evaluated by 6 independent validation samples. The determination coefficient R2 and the standard error of calibration set (SEC) was 99.98% and 0.003 respectively. The correlation coefficient of estimated value and specified value, the standard error and the relative standard deviation (RSD) of the independent validation samples was 0.999 8, 0.000 4 and 0.054% respectively. The quantitative models of the molar fraction of S-ibuprofen were established by PLS and the robustness of models was evaluated. The determination coefficient R2 and the standard error of calibration set (SEC) was 99.82% and 0.007 respectively. The correlation coefficient of estimated value and specified value of the independent validation samples was 0.998 1. The standard error of prediction (SEP) was 0.002 and the relative standard deviation (RSD) was 0.2%. The result demonstrates that sucrose is an ideal chiral selector for building a stable regression model to determine the enantiomeric composition.
|
Received: 2011-04-29
Accepted: 2011-08-07
|
|
Corresponding Authors:
MIN Shun-geng
E-mail: minsg@263.net
|
|
[1] Nicoll-Griffith D, Scartozzi M, Chiem N J. Chromatogr. A, 1993, 635(2): 253. [2] Valderrama P, Romero A L, Imamura P M, et al. Journal of Chromatographic Science, 2009, 47 (9): 777. [3] Schürenkamp J, Beike J, Pfeiffer H, et al. International Journal of Legal Medicine,2011, 125(1): 95. [4] Busch K W, Swamidoss I M, Fakayode S O, et al. J. Am. Chem. Soc., 2003, 125(7): 1690. [5] Fakayode S O, Swamidoss I M, Busch M A, et al. Talanta, 2005, 65(4): 838. [6] Fakayode S O, Busch M A, Bellert D J, et al. Analyst, 2005, 130(2): 233. [7] Tran C D, Grishko V I, Oliveira D. Anal. Chem., 2004, 76(7): 2157. [8] Tran C D, Grishko V I, Oliveira D. Anal. Chem., 2003, 75(23): 6455. [9] Ingle J R, Busch K W, Busch M A. Talanta, 2008, 75(2): 572.
|
[1] |
JIANG Yan1, 2, MENG He1, ZHAO Yi-rong1, WANG Xian-xu1, WANG Sui1, XUE En-yu3, WANG Shao-dong1*. Rapid Analysis of Main Quality Parameters in Forage Soybean by Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 919-923. |
[2] |
CHEN Feng-xia1, YANG Tian-wei2, LI Jie-qing1, LIU Hong-gao3, FAN Mao-pan1*, WANG Yuan-zhong4*. Identification of Boletus Species Based on Discriminant Analysis of Partial Least Squares and Random Forest Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 549-554. |
[3] |
LÜ Xue-gang1, 2,LI Xiu-hua1, 2*,ZHANG Shi-min2,ZHANG Mu-qing1, JIANG Hong-tao1. A Method for Detecting Sucrose in Living Sugarcane With Visible-NIR Transmittance Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3747-3752. |
[4] |
ZHANG Xu1, BAI Xue-bing1, WANG Xue-pei2, LI Xin-wu2, LI Zhi-gang3, ZHANG Xiao-shuan2, 4*. Prediction Model of TVB-N Concentration in Mutton Based on Near Infrared Characteristic Spectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3377-3384. |
[5] |
WANG Si-yuan1, ZHANG Bao-jun1, WANG Hao1, GOU Si-yu2, LI Yu1, LI Xin-yu1, TAN Ai-ling1, JIANG Tian-jiu2, BI Wei-hong1*. Concentration Monitoring of Paralytic Shellfish Poison Producing Algae Based on Three Dimensional Fluorescence Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3480-3485. |
[6] |
WAN Shun-kuan1, 2, LÜ Bo1, ZHANG Hong-ming1*, HE Liang1, FU Jia1, JI Hua-jian3, WANG Fu-di1, BIN Bin1, LI Yi-chao1, 2. Quick Measurement Method of Condensation Point of Diesel Based on Temperature-Compensation Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3111-3116. |
[7] |
DENG Shi-yu1,2, LIU Cheng-zhi1,4*, TAN Yong3*, LIU De-long1, JIANG Chun-xu3, KANG Zhe1, LI Zhen-wei1, FAN Cun-bo1,4, ZHU Cheng-wei1, ZHANG Nan1, CHEN Long1,2, NIU Bing-li1,2, LÜ Zhong3. Research on Spectral Measurement Technology and Surface Material Analysis of Space Target[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3299-3306. |
[8] |
LIU Hong-mei, SHEN Tao, ZHANG Wen-yi, SHI Xi-wen,DAI Tao, BAI Tao, XIAO Ying-hui*. Construction and Verification of a Mathematical Model for Near-Infrared Spectroscopy Analysis of Gel Consistency in Southern Indica Rice[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2432-2436. |
[9] |
FANG yao1, XIE Tian-hua2, GUO Wei1, BAI Xue-bing1, LI Xin-xing1*. On-Line Fast Detection Technology of Chilled Fresh Meat Quality Based on Hyperspectral and Multi-Parameter[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2572-2577. |
[10] |
ZHAO Ning-bo, QIN Kai*, ZHAO Ying-jun, YANG Yue-chao. Study on Indirect Inversion Model and Migration Ability of Chromium in Soil by Aerial Hyperspectral Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(05): 1617-1624. |
[11] |
ZHAO Si-meng1, YU Hong-wei1, GAO Guan-yong2, CHEN Ning2, WANG Bo-yan3, WANG Qiang1*, LIU Hong-zhi1*. Rapid Determination of Protein Components and Their Subunits in Peanut Based on Near Infrared Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 912-917. |
[12] |
CHEN Yu1, WEI Yong-ming1, WANG Qin-jun1,2*, LI Lin3, LEI Shao-hua4, LU Chun-yan5. Effects of Different Spectral Resolutions on Modeling Soil Components[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 865-870. |
[13] |
WANG Hong-wei1, WANG Bo2, JI Tong3, XU Jun4, JU Feng5, WANG Cai-ling6*. Simulation Estimation of BOD Content in Water Based on Hyperspectra[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 978-983. |
[14] |
LIU Hong-ming1,2, LIU Yu-juan1*, ZHONG Zhi-cheng1, SONG Ying1*, LI Zhe1, XU Yang1. Detection and Analysis of Water Content of Crude Oil by Near Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 505-510. |
[15] |
ZHANG Xu1, ZHANG Tian-gang2, MU Wei-song1, FU Ze-tian2,3, ZHANG Xiao-shuan2,3*. Prediction of Soluble Solids Content for Wine Grapes During Maturing Based on Visible and Near-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 229-235. |
|
|
|
|