|
|
|
|
|
|
Measurement of Volatile Compounds Released From Plastic Using |
WANG Run-yu1, DONG Da-ming1,2, YE Song1*, JIAO Lei-zi1,2 |
1. Guilin University of Electronic Technology, Guilin 541004, China
2. Beijing Research Center for Intelligent Equipment for Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China |
|
|
Abstract In addition to degrading into microplastics in the natural environment, plastic products will pollute the environment, but also produce volatile organic compounds, which also cause huge pollution and harm to the environment. Therefore, the measurement of plastic volatiles is particularly important. At present, traditional volatile measurement methods, such as environmental mass spectrometry and chromatography, have disadvantages such as complex measurement processes, high cost, and inability to measure in real time. Therefore, there is a lack of a fast and effective measurement method for plastic volatiles. In this study, Fourier Transform Infrared Spectrometer (FTIR Spectrometer) combined with White Cell was used to measure plastic volatiles. However, due to the limited sensitivity of extractive Fourier Transform Infrared Spectrometer, it is not easy to measure plastic volatiles. Therefore, in response to this problem, we try to improve the sensitivity of conventional Fourier transform infrared spectrometers through a long optical path gas cell to measure different types of plastic volatiles. In this research, we studied 5 kinds of plastic products, namely low density polyethylene (LDPE), high density polyethylene (HDPE), polyethylene (PE), polyethylene terephthalate (PET), Polypropylene (PP), through the White cell with an optical path length of 20 m combined with a Fourier transform infrared spectrometer to achieve the observation of some of the volatile spectral characteristics. It is observed from the experiment that all types of plastics have two spectral absorption bands. Obvious spectral characteristics at 800~850 and 1 050~1 150 cm-1 respectively. In addition to polyethylene terephthalate (PET), the other four plastic volatiles also have obvious spectral absorption bands at 2 800~3 000 cm-1. We further studied the volatiles produced by plastics under different temperature conditions. By analyzing the infrared spectra of the volatiles produced by plastics under different temperature conditions, we found that, except for low-density polyethylene (LDPE), the spectra differed significantly under the two temperature conditions. In addition, other types of plastic volatiles have relatively small differences in infrared spectra. This study proposes a new method for measuring plastic volatiles based on long optical path FTIR, which proves its effectiveness in measuring plastic volatiles. This method has the advantages of low measurement cost, continuous observation, real-time online, etc. Lays the foundation for continuous is online monitoring of plastic volatile emission flux.
|
Received: 2020-10-11
Accepted: 2021-02-02
|
|
Corresponding Authors:
YE Song
E-mail: yesongmail@sina.com
|
|
[1] Teuten E L, Saquing J M, Knappe D R, et al. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1526): 2027.
[2] Thompson R C, Moore C J, Vom Saal F S, et al. Philosophical Transactions of the Royal Society B: Biological Sciences, 2009, 364(1526): 2153.
[3] Desforges J-P W, Galbraith M, Dangerfield N, et al. Marine Pollution Bulletin, 2014, 79(1): 94.
[4] Sun X, Liang J, Zhu M, et al. Environmental Pollution, 2018, 242:585.
[5] Liebmann B, Köppel S, Königshofer P, et al. Assessment of Microplastic Concentrations in Human Stool-Final Results of A Prospective Study, Environment Agency Austria, 2018, 10.13140/RG.2.2.16638.02884.
[6] Schwabl P, Köppel S, Königshofer P, et al. Annals of Internal Medicine, 2019, 171(7): 453.
[7] Royer S J, Ferron S, Wilson S T, et al. PLOS ONE, 2018, 13(8): e0200574.
[8] Oppenheimer C, Francis P, Burton M, et al. Appl. Phys. B, 1998, 67: 505.
[9] Whaley C, Yang H, Gong W, et al. Evaluating Canada’s Air Quality Forecasting Model With FTIR Data From NDACC and TCCON, Sciencesconf.org: irwg-tccon-2017: 155425, 2017. 61.
[10] Dong D, Zhao C, Zheng W, et al. Sci. Rep., 2013, 3: 2585.
[11] Dasgupta P K, Genfa Z, Poruthoor S K, et al. Analytical Chemistry, 1998, 70(22): 4661. |
[1] |
ZHANG Yan-ru1, 2, SHAO Peng-shuai1*. Study on the Effects of Planting Years of Vegetable Greenhouse on the
Cucumber Qualties Using Mid-IR Spectroscopoy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1816-1821. |
[2] |
XIAO Shi-jie1, WANG Qiao-hua1, 2*, LI Chun-fang3, 4, DU Chao3, ZHOU Zeng-po4, LIANG Sheng-chao4, ZHANG Shu-jun3*. Nondestructive Testing and Grading of Milk Quality Based on Fourier Transform Mid-Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1243-1249. |
[3] |
ZHOU Jun1, 2, YANG Yang2, YAO Yao2, LI Zi-wen3, WANG Jian3, HOU Chang-jun1*. Application of Mid-Infrared Spectroscopy in the Analysis of Key Indexes of Strong Flavour Chinese Spirits Base Liquor[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 764-768. |
[4] |
CHEN Feng-xia1, YANG Tian-wei2, LI Jie-qing1, LIU Hong-gao3, FAN Mao-pan1*, WANG Yuan-zhong4*. Identification of Boletus Species Based on Discriminant Analysis of Partial Least Squares and Random Forest Algorithm[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 549-554. |
[5] |
SHI Si-qian, YANG Fang-wei, YAO Wei-rong, YU Hang, XIE Yun-fei*. Rapid Detection of Levamisole Residue in Pork by Surface Enhanced Raman Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3759-3764. |
[6] |
XIAO Shi-jie1, WANG Qiao-hua1, 2*, FAN Yi-kai3, LIU Rui3, RUAN Jian3, WEN Wan4, LI Ji-qi4, SHAO Huai-feng4, LIU Wei-hua5, ZHANG Shu-jun3*. Rapid Determination of αs1-Casein and κ-Casein in Milk Based on Fourier Transform Infrared Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3688-3694. |
[7] |
LIN Yan1, XIA Bo-hou1, LI Chun2, LIN Li-mei1, LI Ya-mei1*. Rapid Identification of Crude and Processed Polygonui Multiflori Radix With Mid-IR and Pattern Recognition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3708-3711. |
[8] |
SUN Di1, 2, LI Meng-ting1, MU Mei-rui1, ZHAO Run1*, ZHANG Ke-qiang1*. Rapid Determination of Nitrogen and Phosphorus in Dairy Farm Slurry Via Near-Mid Infrared Fusion Spectroscopy Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3092-3098. |
[9] |
ZHANG Ya-li1, 2, YAN Kang-ting1, 2, WANG Lin-lin2, 3, CHEN Peng-chao2, 3, HAN Yi-fang2, 3, LAN Yu-bin2, 3*. Research Progress of Pesticide Residue Detection Based on Fluorescence Spectrum Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2364-2371. |
[10] |
LIAO Wen-long1, LIU Kun-ping2, HU Jian-ping1, GAN Ya1, LIN Qing-yu3, DUAN Yi-xiang3*. Research Advances and Trends of Rapid Detection Technologies for Pathogenic Bacteria Based on Fingerprint Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2372-2377. |
[11] |
PAN Sun-qiang, HU Peng-bing, CHEN Zhe-min, ZHANG Jian-feng, LIU Su-mei. Measurement of Vapor Hydrogen Peroxide Based on Mid Infrared Absorption Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1102-1106. |
[12] |
ZOU Li-chang1, HUANG Jun4, LI Zheng-hui1, DENG Yao1, SHAO Guo-dong1, RUAN Zhen4, LU Zhi-min1, 2, 3, YAO Shun-chun1, 2, 3*. Research on Correction Method of Background Signal Drift in Mid-Infrared Harmonic Detection[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 408-413. |
[13] |
SHA Yun-fei1, HUANG Wen1, WANG Liang1, LIU Tai-ang2,YUE Bao-hua2, LI Min-jie2, YOU Jing-lin2, GE Jiong1*, XIE Wen-yan1*. Merging MIR and NIR Spectral Data for Flavor Style Determination[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 473-477. |
[14] |
YAN Shuai1, LI Yong-yu1*, PENG Yan-kun1, LIU Ya-chao1, HAN Dong-hai2. A Method for Correcting Nitrofurantoin Raman Signal in Honey Based on Internal Standard of Substrate[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 546-551. |
[15] |
ZHAO Qiu-ling1,3,SHI Ya-jing1,ZHANG Zhen-yu2. Rapid Determination of Canthaxanthin in Egg Yolk by First Order Derivative Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3537-3541. |
|
|
|
|