|
|
|
|
|
|
Synthesis, Spectroscopic Characterization, Thermogravimetric and Biological Activity Evaluation of Te(Ⅳ), Se(Ⅳ), V(Ⅲ), Nb(Ⅴ), Ta(Ⅴ) Complexes With Indole-3-Acetic Acid Plant Hormone Ligand |
Jehan Y. Al-Humaidi1, Foziah A. Al-Saif1, Dalal N. Binjawhar1, Hanan A. Bakhsh1,Moamen S. Refat2* |
1. Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia
2. Department of Chemistry, Faculty of Science, Taif University, Al-Haweiah 21974, Taif, Saudi Arabia |
|
|
Abstract Te(Ⅳ), Se(Ⅳ), V(Ⅲ), Nb(Ⅴ) and Ta(Ⅴ) complexes of indole-3-acetic acid (IAAH) ligand were synthesized, characterized by elemental analysis and various spectroscopic techniques like, IR, 1H-NMR, X-ray powder diffraction, UV-Visible, thermogravimetry analysis, magnetic measurements, molar conductance and surface morphology using SEM. All the synthesized complexes of IAAH ligand have 1∶2 stoichiometry of the types [Te(IAA)2(NH3)2]·2Cl (Ⅰ), [Se(IAA)2(NH3)2]·2Cl (Ⅱ), [V(IAA)2(NH3)(Cl)] (Ⅲ), [Nb(IAA)2(Cl)3] (Ⅳ), and [Ta(IAA)2(Cl)3] (Ⅴ). Spectral analysis indicates octahedral geometry for the Te(Ⅳ), Se(Ⅳ) and V(Ⅲ) complexes, whereas both Nb(Ⅴ) and Ta(Ⅴ) have a seven-coordination. The bonding sites are the oxygen atoms of carboxylate group for the deprotonated indole-3-acetic acid (IAA) ligand. The thermogravimetry analysis studies gave evidence for the presence of other coordinated molecules (Cl or NH3) in the composition of IAA complexes, which were further supported by IR and micro analytical measurements. The higher molar conductance data of tellurium and selenium (Ⅳ) complexes reveal that these chelates are electrolytes, while low conductivity values for the vanadium(Ⅲ), niobium and tantalum(Ⅴ) chelates indicated a non-electrolytes. To test the antibacterial property of the five complexes in this study, four bacterial strains Klebsiella (G-), Escherichia coli (G-), Staphylococcus aureus (G+) and Staphylococcus epidermidis (G+) were used in the investigation. The effects of the five complexes in the cytotoxicity of Caco-2 and Mcf-7 human cancer cell lines were studied Neutral red uptake assay for the estimation of cell viability/cytotoxicity protocol.
|
Received: 2020-02-16
Accepted: 2020-06-10
|
|
Corresponding Authors:
Moamen S. Refat
E-mail: msrefat@yahoo.com
|
|
[1] Quint M, Gray W M. Curr. Opin. Plant Biol., 2006, 9: 448.
[2] Zhao Y. Annu. Rev. Plant. Biol., 2010, 61: 49.
[3] Jiang Y, Wu Y, Hu N, et al. Appl. Soil Ecology, 2020, 147: Article 103447.
[4] Ran J, Zheng W, Wang H, et al. Ecotoxicology and Environmental Safety, 2020,19115:Article 110213.
[5] Lin H R, Shu H Y, Lin G H. Microbiological Research, 2018, 216: 30.
[6] Kochar M, Upadhyay A, Srivastava S. Research in Microbiology, 2011,162(4):426.
[7] Al-Saif F A, Alibrahim K A, Alfurhood J A, et al. J. Mol. Liq., 2018,249:438.
[8] Alibrahim K A, Al-Saif F A, Alghamdi M T, et al. RSC Advances, 2018,8(40):22515.
[9] Al-Saif F A, Alibrahim K A, Alosaimi E H, et al. J. Mol. Liq., 2018,266:242.
[10] Kamnev A A, Shchelochkov A G, Perfiliev Y D, et al. J. Mol. Struct., 2001,563-564:565.
[11] Pathak A, Blair V L, Ferrero R L, et al. J. Inorg. Biochem., 2017,177:266.
[12] Xing N, Xu L T, Bai F Y, et al Inorg. Chim. Acta, 20014,409, Part B:360.
[13] Bauer A W, Kirby W A, Sherris C, et al. Am. J. Clin. Pathology, 1996,45:493.
[14] Repetto G, del Peso A, Zurita J L. Neutral Red Uptake Assay for the Estimation of Cell Viability/Cytotoxicity, Nature Protocols, 2008.
[15] El-Habeeb A A, Refat M S. J. Mol. Struct., 2019, 1175: 65.
[16] Nakamoto K. Infrared and Raman Spectra of Inorganic and Coordination Compounds, fourth ed., Wiley, New York, 1986.
[17] Deacon G B, Philips R J. Coord. Chem. Rev., 1980, 33: 227.
[18] Lever A B P. Electronic Spectra of dn Ions Inorganic Electronic Spectroscopy. 2nd Ed. 1984.
[19] Gust K R, Knox J E, Heeg M J, et al. Eur. J. Inorg. Chem., 2002,9:2327.
[20] Kumar S, Syed A, Andotra S, et al. J. Mol. Struct.,2018,1154:165.
[21] Cullity B D, Stock S R. Elements of X-ray Diffraction, 3rd ed., New York: Prentice Hall,2001. 389. |
[1] |
MA Fang1, HUANG An-min2, ZHANG Qiu-hui1*. Discrimination of Four Black Heartwoods Using FTIR Spectroscopy and
Clustering Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(06): 1915-1921. |
[2] |
FAN Chun-hui1, 2, ZHENG Jin-huan3, LIU Hong-xin1. FTIR, 2D-IR and XPS Analyses on the Mechanism of Protoplast Derived From Calendula Officinalis in Response to Lead and Cadmium in Soil[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(05): 1420-1425. |
[3] |
YANG Yan-ling1, Andy Hsitien Shen1, FAN Yu-rong2, HUANG Wei-zhi1, PEI Jing-cheng1*. UV-Vis-NIR Spectroscopic Characteristics of Vanadium-Rich
Hydrothermal Synthetic Emeralds From Russia[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1199-1203. |
[4] |
ZHANG Dian-kai1, LI Yan-hong1*, ZI Chang-yu1, ZHANG Yuan-qin1, YANG Rong1, TIAN Guo-cai2, ZHAO Wen-bo1. Molecular Structure and Molecular Simulation of Eshan Lignite[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(04): 1293-1298. |
[5] |
WANG Fang-fang1, ZHANG Xiao-dong1, 2*, PING Xiao-duo1, ZHANG Shuo1, LIU Xiao1, 2. Effect of Acidification Pretreatment on the Composition and Structure of Soluble Organic Matter in Coking Coal[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 896-903. |
[6] |
HU Chao-shuai1, XU Yun-liang1, CHU Hong-yu1, CHENG Jun-xia1, GAO Li-juan1, ZHU Ya-ming1, 2*, ZHAO Xue-fei1, 2*. FTIR Analysis of the Correlation Between the Pyrolysis Characteristics and Molecular Structure of Ultrasonic Extraction Derived From Mid-Temperature Pitch[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(03): 889-895. |
[7] |
WEN Feng-rui1, GUAN Hai-ou1*, MA Xiao-dan1, ZUO Feng2, 3*, QIAN Li-li2, 3, 4. Moldy Rice Detection Method Based on Near Infrared Spectroscopy Image Processing Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 428-433. |
[8] |
YANG Jiong1, 2, QIU Zhi-li1, 4*, SUN Bo3, GU Xian-zi5, ZHANG Yue-feng1, GAO Ming-kui3, BAI Dong-zhou1, CHEN Ming-jia1. Nondestructive Testing and Origin Traceability of Serpentine Jade From Dawenkou Culture Based on p-FTIR and p-XRF[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2022, 42(02): 446-453. |
[9] |
ZHANG Jing1, 2, XU Yang1, JIANG Yan-wu1, ZHENG Cheng-yu2, ZHOU Jun1,2, HAN Chang-jie1*. Recent Advances in Application of Near-Infrared Spectroscopy for Quality Detections of Grapes and Grape Products[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3653-3659. |
[10] |
HE Xiong-fei1, 2, HUANG Wei3, TANG Gang3, ZHANG Hao3*. Mechanism Investigation of Cement-Based Permeable Crystalline Waterproof Material Based on Spectral Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3909-3914. |
[11] |
ZHOU Jing1,2, ZHANG Qing-qing1,2, JIANG Jin-guo2, NIE Qian2, BAI Zhong-chen1, 2*. Study on the Rapid Identification of Flavonoids in Chestnut Rose (Rosa Roxburghii Tratt) by FTIR[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3045-3050. |
[12] |
YANG Han, CAO Jian-fei*, WANG Zhao-hai*, WU Quan-yuan. Study on Soil Salinity Estimation Method of “Moisture Resistance” Using Visible-Near Infrared Spectroscopy in Coastal Region[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3077-3082. |
[13] |
Moamen S. Refat1*, Mahmoud Salman2, Akram M. El-Didamony3, Hammad Fetooh3, Eman S.E. Abd El-Maksoud3,Mohamed Y. El-Sayed3,4. Spectroscopic and Fluorescence Studies on the Trivalent Ce, Eu, Nd and La Metal Ions Rhodamine C Florescent Dye Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3311-3315. |
[14] |
Samy M. El-Megharbel*,Moamen S. Refat. In First Time: Synthesis and Spectroscopic Interpretations of Manganese(Ⅱ), Nickel(Ⅱ) and Mercury(Ⅱ) Clidinium Bromide Drug Complexes[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(10): 3316-3320. |
[15] |
FU Juan-juan, MA Dan-ying, TANG Jin-lan, BAO Yi-lin, ZHAO Yuan, SHANG Lin-wei, YIN Jian-hua*. NIR Spectroscopic Study and Staging Diagnosis of Osteoarthritic Articular Cartilage[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(09): 2770-2775. |
|
|
|
|