|
|
|
|
|
|
Studies and Applications of Organic Nonlinear Material DAST |
GU Yu1, XU Xiang-dong1*, LIAN Yu-xiang1, LI Xin-rong1, FAN Kai1, CHENG Xiao-meng1, WANG Fu1, DAI Ze-lin1, XU Jimmy2 |
1. School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
2. School of Engineering, Brown University, Providence, Rhode Island 02912, USA |
|
|
Abstract With the rapid development of optical communication and optical information processing technology, nonlinear optical materials have attracted considerable attention in both industry and academia. Compared with inorganic non-linear optical materials, organic nonlinear optical materials exhibit the advantages of short response time, easy processing, and high nonlinear coefficient. Particularly, 4-N, N-dimethylamino-4’-N’-methyl-stilbazolium tosylate (DAST) is an artificially-designed organic non-linear material with non-centrosymmetry and strong polarizability. Numerous theoretical and experimental results indicated that DAST is one of the most important and successful organic nonlinear materials. Owing to its high second-order optical nonlinear coefficient, large electro-optic coefficient, large birefringence difference, and low dielectric constant, faster and stronger optical nonlinear responses can be achieved by DAST. Recent spectroscopic results revealed that DAST exhibits anisotropic THz spectral features. In this article, the growth of DAST crystals, and their practical applications in THz wave generation, second harmonic generation, as well as electro-optical detection and electro-optical modulation, are systematically reviewed. Moreover, our recent results about the preparation of DAST-based composite films, THz spectra, optoelectronic properties of DAST modified by carbon nanotubes or graphenes, and novel DAST-based metamaterials, are simultaneously presented. These results suggest a new perspective on DAST and its potential applications in the future. In addition, we have proposed some new ideas about DAST, such as DAST crystal growth induced by an electric filed or self-assembling monolayer, and frequency conversion efficiency of DAST crystal improved by quasi-phase-matching method. The DAST results systematically summarized in this review are helpful for promoting further studies on DAST-based materials and their applications in electro-optic modulators, THz detectors, frequency converters, etc, and consequently, the applications of DAST in optical communications, optical information processing, military technology and other important fields can be further expanded.
|
Received: 2017-07-03
Accepted: 2017-12-29
|
|
Corresponding Authors:
XU Xiang-dong
E-mail: xdxu@uestc.edu.cn
|
|
[1] Marder S R, Perry J W, Schaefer W P, et al. Science, 1989, 245(4918): 626.
[2] Schneider A, Biaggio I, Günter P, et al. Optics Communications, 2003, 224(4): 337.
[3] Jazbinsek M, Mutter L, Günter P, et al. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14(5): 1298.
[4] Pan F, Knpfle G, Bosshard C, et al. Applied Physics Letters, 1996, 69(1): 13.
[5] Cunningham P D, Hayden L M. Optics Express, 2010, 18(23): 23620.
[6] Bosshard C, Spreiter R, Degiorgi L, et al. Physical Review B, 2002, 66(20): 248.
[7] Meier U, Bösch M, Bosshard C, et al. Synthetic Metals, 2000, 109(1): 19.
[8] Jagannathan K, Kalainathan S. Materials Research Bulletin, 2007, 42(11): 1881.
[9] Xu X, Sun Z, Fan K, et al. Scientific Reports, 2015, 5: 12269.
[10] Xu X, Huang L, Fan K, et al. Journal of Materials Chemistry C, 2014, 2(13): 2394.
[11] Han P Y, Tani M, Pan F, et al. Optics Letters, 2000, 25(9): 675.
[12] Kwon O P, Jazbinsek M, Yun H, et al. Crystal Growth & Design, 2008, 8(11): 4021.
[13] Brahadeeswaran S, Onduka S, Takagi M, et al. Crystal Growth & Design, 2006, 6(11): 2463.
[14] Matsukawa T, Hoshina H, Hoshikawa A, et al. Journal of Infrared Millimeter & Terahertz Waves, 2016, 37(6): 540.
[15] WU Ren-zhen, FANG Zhen-xing, LIU Ping, et al(吴仁珍, 方振兴, 刘 平, 等). Acta Physico-Chimica Sinica(物理化学学报), 2013, 29(12): 2534.
[16] FENG Ji-kang(封继康). Acta Chimica Sinica(化学学报), 2005, 63(14): 1245.
[17] Mutter L, Koechlin M, Jazbinšek M, et al. Optics Express, 2007, 15(25): 16828.
[18] Thakur M, Xu J, Bhowmik A, et al. Applied Physics Letters, 1999, 74(5): 635.
[19] Thakur M, Meyler S. Macromolecules, 1985, 18(11): 2341.
[20] Zhang X C, Ma X F, Jin Y, et al. Applied Physics Letters, 1992, 61(26): 3080.
[21] Taniuchi T, Shikata J, Ito H, et al. Electronics Letters, 2000, 36(16): 1414.
[22] Taniuchi T, Okada S, Nakanishi H, et al. Journal of Applied Physics, 2004, 95(11): 5984.
[23] Katayama I, Akai R, Bito M, et al. Applied Physics Letters, 2010, 97(2): 021105.
[24] Bing T, Shu-hua W, Ke F, et al. Crystal Research and Technology, 2014, 49(12): 943.
[25] Ruiz B, Jazbinsek M, Günter P, et al. Crystal Growth & Design, 2008, 8(11): 4173.
[26] XU Xiang-dong, DAI Ze-lin, JIANG Ya-dong, et al (许向东, 戴泽林, 蒋亚东,等). Chinese Patent(中国发明专利), 201610812700X, 2016.
[27] Tsunesada F, Iwai T, Watanabe T, et al. Journal of Crystal Growth, 2002, 237(1): 2104.
[28] Nahata A, Weling A S, Heinz T F, et al. Applied Physics Letters, 1996, 69(16): 2321.
[29] Schneider A, Neis M, Stillhart M, et al. Journal of the Optical Society of America B, 2006, 23(9): 1822.
[30] Taniuchi T, Shikata J, Osaki N, et al. Electronics Letters, 2002, 40(1): 148.
[31] Stepanov A G, Rogov A, Bonacina L, et al. Optics Express, 2014, 22(18): 21618.
[32] Bass M, Franken P A, Ward J F, et al. Physical Review Letters, 1962, 9(11): 446.
[33] Pan F, Wong M S, Bosshard C, et al. Advanced Materials, 1996, 8(7): 592.
[34] Knopfle G, Schlesser R, Ducret R, et al. Nonlinear Optics, 1995, 9: 143.
[35] ZHANG Yi, SHEN Wei-min(张 艺, 沈为民). Optical Instruments(光学仪器), 2005, 27(5): 77.
[36] ZHANG Jing, MA Hong-liang, LUO Yu, et al(张 靖, 马红亮, 罗 玉,等). Chinese Journal of Lasers(中国激光), 2002, 29(12): 1057.
[37] CHEN Yun-lin, LUO Yong-feng, YUAN Jian-wei, et al(陈云琳, 罗勇锋, 袁建伟,等). Acta Optica Sinica(光学学报), 2005, 25(1): 63.
[38] Jazbinsek M, Figi H, Hunziker C, et al. Proc SPIE, Linear and Nonlinear Optics of Organic Materials X, 2010, 7774: 77740Q.
[39] Kutty S P, Thakur M, Hazlewood P, et al. Applied Physics Letters, 2005, 87(19): 191111.
[40] Zheng X, Wu S, Sobolewski R, et al. Applied Physics Letters, 2003, 82(15): 2383.
[41] Kaino T, Takayama K, Cai B, et al. Ferroelectrics, 2001, 257(1): 14.
[42] Pan F, McCallion K, Chiappetta M, et al. Applied Physics Letters, 1999, 74(4): 492.
[43] Kaino T, Cai B, Takayama K, et al. Advanced Functional Materials, 2002, 12(9): 599.
[44] Walther M, Jensby K, Keiding S R, et al. Optics Letters, 2000, 25(12): 911.
[45] Dai Z L, Xu X D, Gu Y, et al. 2017, Journal of Chemical Physics, 146(12): 124119.
[46] LIAN Yu-xiang, DAI Ze-lin, XU Xiang-dong, et al(连宇翔, 戴泽林, 许向东,等). Acta Physica Sinica(物理学报), 2017, 66(24): 244211.
[47] Glavcheva Z, Umezawa H, Mineno Y, et al. Japanese Journal of Applied Physics, 2005, 44(7R):5231.
[48] Baldo M, Deutsch M, Burrows P, et al. Advanced Materials, 1998, 10(18): 1505.
[49] Murphy D, Ray M, Wyles J, et al. Proc SPIE, Infrared Technology and Applications XXX, 2004, 5406: 531. |
[1] |
CHEN Yan-ling, CHENG Liang-lun*, WU Heng*, XU Li-min, HE Wei-jian, LI Feng. A Method of Terahertz Spectrum Material Identification Based on Wavelet Coefficient Graph[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(12): 3665-3670. |
[2] |
LIU Yan-de, XU Zhen, HU Jun, LI Mao-peng, CUI Hui-zhen. Research on Variety Identification of Fritillaria Based on Terahertz Spectroscopy[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(11): 3357-3362. |
[3] |
WANG Wen-ai, LIU Wei*. Terahertz Spectroscopy Characteristics of Sugar Compounds[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(08): 2391-2396. |
[4] |
ZHAO Wen-ya1, 2, MIN Hong2, LIU Shu2*, AN Ya-rui1*, YU Jin3. Application Progress of Artificial Neural Network in Laser-Induced Breakdown Spectral Data Analysis[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(07): 1998-2004. |
[5] |
ZHANG Hao1, 2, 4, LI Hai-li1, LONG Hong-ming2, 4, LIU Zi-min3, ZHANG Yao-hui3, ZHENG Wei-cheng4. Spectroscopic Analysis of Reinforcing-Flame Retardant Mechanism of Modified Steel Slag-Mineral Powder Composite Rubber Filler[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1138-1143. |
[6] |
ZHU Jie1, WU Qian1, SHAO Xiao1, YU Xiao-jun2, LIU Lin-bo3, DAI Jia-ning1, MO Jian-hua1*. Conformal Coating Thickness Measurement on Printed Circuit Board With Spectral Domain Optical Coherence Tomography[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1157-1162. |
[7] |
YANG Chong-shan1,2, DONG Chun-wang2*, JIANG Yong-wen2, AN Ting1,2, ZHAO Yan1*. A Method for Judging the Fermentation Quality of Congou Based on Hyperspectral[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1320-1328. |
[8] |
MIAO Xin-yang1,2,3, LIU Xue-cong1,3, CHEN Meng-xi3, CHEN Si-tong3, ZHANG Shan-zhe1, LU Wan-ting3, PENG Xue3, ZHAN Hong-lei2,3, ZHU Ming-da1, ZHAO Kun1,2,3*. Terahertz Spectral Characteristics of Rocks With Different Lithologies[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(04): 1314-1319. |
[9] |
GE Liang-quan, LI Fei*. Research Advances in In-Situ X-Ray Fluorescence Analysis Technology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 704-713. |
[10] |
TANG Lin1, 2, ZHAO Wei-dong4, YU Song-ke3*, LIU Ze1*, YU Xiao-dong4, MENG Yuan4, HUANG Xing-lu4. Optimization Design of X-Ray Spectrum Data Processing Platform[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(03): 763-767. |
[11] |
ZHU Rong-sheng1, 2, SHEN Tao1, 2*, LIU Ying-li1, 2, ZHU Yan1, 2, CUI Xiang-wei1, 2. Wasserstein GAN for the Classification of Unbalanced THz Database[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(02): 425-429. |
[12] |
College of Information Science and Technology, Nanjing Forestry University, Nanjing 210037, China
. Investigation on Terahertz Spectroscopy of Food Additives Based on Dispersion-Correction Functional Theory[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2021, 41(01): 100-104. |
[13] |
TANG Lin1,2,3, LIAO Xian-li1*, LIU Xing-yue1, ZHAO Yong-xin1, LI Yue-peng1, YU Song-ke1,3. Study on Correction Algorithms of Characteristic Peak Drift in X-Ray Spectrum[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(11): 3633-3638. |
[14] |
LI Zhao, WANG Yong-feng, CAO Jing, WU Kun-yao, WANG Ya-nan. Preparation and Performance of Red Phosphor ScVO4∶Eu3+ for White LEDs[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3077-3080. |
[15] |
SONG Xue-yan1, LI Yan1, XIA Qi-ying2*, JU Xue-hai1*. Theoretical Study on Terahertz Spectra of TKX-50[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2020, 40(10): 3056-3060. |
|
|
|
|