光谱学与光谱分析 |
|
|
|
|
|
A Concept Design of Flat-Field Spectrograph for Wide Wavelength Range |
LI Shi-yuan1, ZHANG Guang-cai2, TENG Ai-ping3* |
1. Shangdong University, Ji’nan 250100,China2. Beijing Institute of Applied Physics and Computational Mathematics, Beijing 100088, China3. China University of Mining & Technology, Beijing 100083, China |
|
|
Abstract The radiation spectrum from the plasmas contains a large amount of information of plasmas. Thus, one of the most effective methods to detecting the plasma parameters is measure the plasma radiation spectrum. Until now, since the restriction of the Toshiba mechanically ruled aberration-corrected concave gratings, the measurable wavelength range of the incidence flat-field grazing spectrometer in the soft X-ray range are only from 5 to 40 nm. In order to extend the wavelength rang of grazing incidence flat-field spectrometer, first, a grazing incidence concave reflection grating ray-trace code is written using optical path equation. Second, under the same conditions with reference 6, we compare our numerical results with Harada’s results. The results show that our results agree very well with the results of Harada. The results of comparison show that our ray-trace code is believable. Finally, the variety of the flat-field curves are detailedly investigated using the ray-trace code with the different grazing incidence conditions. The results show that the measurable wavelength range of the incidence flat-field grazing spectrometer are extended to 5~80 nm from the soft X-ray wavelength range of 5~40 nm. This result theoretically demonstrates the possibility of expanded the traditional band flat-field grazing incidence spectrometer from soft X-ray band to the extreme ultraviolet (XUV), and also bring a new design ideas for improving the use of grazing incidence flat field concave grating.
|
Received: 2014-04-19
Accepted: 2014-08-20
|
|
Corresponding Authors:
TENG Ai-ping
E-mail: tengaiping@cumtb.edu.cn
|
|
[1] Key M H, Cable M D, Cowan T E, et al. Phys. Plasmas, 1994, 5:1966. [2] Johansson S,Letokhov V S, et al. Phys. Rev. Lett., 2003, 90: 011101. [3] Zhang J, Zepf M, Norreys P A, et al. Phys. Rev. A, 1996, 54: 1597. [4] Zhang J, MacPhee A G, Lin J, et al. Science, 1997, 276: 1097. [5] Naik S, Mukherjee U, Poul B, et al. Advances in Space Research, 2009, 43: 900. [6] Harada T, Kita T. Appl. Opt., 1980, 19: 3987. [7] LI Ying-jun, ZHANG Jie, PENG Han-sheng, et al(李英骏,张 杰,彭翰生,等). High Power Laser and Particle Beams(强激光与粒子束), 1998, 10: 409. [8] LI Ying-jun, YANG Jian-lun, ZHANG Jie(李英骏, 杨建伦, 张 杰). Acta Physica Sinica(物理学报), 2000, 49: 863. [9] LI Ying-jun, ZHANG Bao-han, YANG Jian-lun, et al(李英骏,张保汉,杨建伦,等). High Power Laser and Particle Beams(强激光与粒子束), 2000, 12:582. [10] HUO Hai-bo, LI Ying-jun, CHENG Tao(霍海波,李英骏,程 涛). High Power Laser and Particle Beams(强激光与粒子束), 2008, 20:1265. [11] Wan L Y, Huang M, Huang X M, et al. Proc. SPIE, 2007, 6857: 683716-6. |
[1] |
LIU Ling1, YANG Ming-xing1, 2*, LU Ren1, Andy Shen1, HE Chong2. Study on EDXRF Method of Turquoise Composition[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1910-1916. |
[2] |
GAO Hao1, WANG Xiao1, SHANG Lin-wei1, ZHAO Yuan1, YIN Jian-hua1*, HUANG Bao-kun2*. Design and Application of Small NIR-Raman Spectrometer Based on Dichroic and Transmission Collimating[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(06): 1933-1937. |
[3] |
MA Yun-yun1, WANG Yong-qiang2, MIN Qi2, CAO Shi-quan2, ZHANG Zheng-rong1, SU Mao-gen2, SUN Dui-xiong2*, DONG Chen-zhong2. Relative Spectral Intensity Response Calibration of Spectrometers Using Ar Plasma Emission Branching Ratio Method[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1375-1379. |
[4] |
ZHANG Rui1,2, ZHU Ji-wei1, LIU Jian-li1,2, CUI Ji-cheng1, LI Xiao-tian1, Bayanheshig1. Study on the Laser-Induced Plasma Spectroscopy Based on the Echelle Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(05): 1605-1609. |
[5] |
YANG Xiu-da, ZHANG Ling*, XU Zong, ZHANG Peng-fei, CHEN Ying-jie, HUANG Juan, WU Zhen-wei,. In-situ Absolute Intensity Calibration of Fast-Response Extreme Ultraviolet Spectrometer on Experimental Advanced Superconducting Tokamak[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1262-1267. |
[6] |
ZOU Yao-pu1, 2, ZHANG Lei1, 2, HAN Chang-pei2*, LI Li-bing2. Study of High Accuracy Spectral Calibration of Fourier Transform Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(04): 1268-1275. |
[7] |
YUAN Jing, SHEN Jia-lin*, LIU Jian-kun, ZHENG Rong-hua. Determination of Rare Earth Elements in Geological Samples by High-Energy Polarized Energy-Dispersive X-Ray Fluorescence Spectrometry[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 582-589. |
[8] |
XU Li-peng1, 2, GE Liang-quan1*, DENG Xiao-qin2, CHEN Li2, ZHAO Qiang2, LI Bin2, WANG Liang2. Research of Carborne γ-Ray Energe Spectrum Radiation Dose Rate Based on FFT-BP Network Model[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 590-594. |
[9] |
HONG Guang-lie1, ZHOU Yan-bo1,2, LIU Hao1, KONG Wei1, SHU Rong1,2*. Feasibility Study of Mars Rover’s Laser Induced Breakdown Spectroscopy Based Mie-Lidar Design[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 600-605. |
[10] |
YAN Zheng-zhou1,2,5, DENG Li-cai1, ZHANG Chun-guang1, LUO Chang-qing1, Grundahl F3, HU Zhong-wen4, JI Hang-xin4, WANG Jia-ning4, XU Ming-ming4, DAI Song-xing4, Andersen M F3, WANG Kun5, TIAN Jian-feng1. SONG-China Project High Resolution Spectrograph and High Precision Radial Velocity Measurements of Asteroseismology[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2018, 38(02): 621-626. |
[11] |
XING Li-feng1,2, CHANG Liang1,2. Lithium Abundance of 17 Young Nearby Stars: High Resolution Spectrograph Observation with Lijiang 1.8 m Telescope[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3900-3903. |
[12] |
TANG Qian1, GUO Li-xin1*, ZHAO Bao-chang2. An Allotype Double H-V Depolarizer for Hyperfine Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3913-3919. |
[13] |
LIU Xiang-lei1,2, LIU Yang-yang1*, FANG Yu1, PEI Lin-lin1, Lü Qun-bo1. Optical Design of Large Relief Large Relative Apertureand High Resolution Modified Dyson Imaging Spectrometer[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3908-3912. |
[14] |
GAO Jian-hua1,2, LIANG Jing-qiu1, Lü Jin-guang1*, LIANG Zhong-zhu1, QIN Yu-xin1, WANG Wei-biao1. A Stepped Mirror Based Temporally and Spatially Modulated Imaging Fourier Transform Spectrometer: Principle and Data Processing[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(12): 3932-3939. |
[15] |
ZHANG Li-guo, CHENG Jia-jia, NI Li-jun*, LUAN Shao-rong. Rapid Analysis of the Quality of Ginkgo Biloba Leaf Based on UV, Near Infrared and Multi-Source Composite Spectral Information[J]. SPECTROSCOPY AND SPECTRAL ANALYSIS, 2017, 37(10): 3063-3069. |
|
|
|
|